How to handle and care for bulbs in ophthalmic equipment

- A metallic haze on the inside of the glass envelope of the bulb signifies evaporation of the filament, precedes filament failure, and also reduces the lamp’s brightness.
- Inspect the bulb’s contacts for corrosion. Sometimes it is possible to remove the corrosion with a file or sandpaper.

Maintaining a bulb inventory
- Based on the number of instruments you have that require a specific type of bulb, and on how often you replace this type of bulb, you should purchase and store replacements in clearly labeled containers. Figure 3 shows one way to label the bulb containers.

General handling and safety precautions
- Always turn off the electrical power before inserting, removing, or cleaning a bulb.
- Always handle bulbs with care and store them appropriately to minimise the likelihood of glass breakage. If you do break a bulb, please remember that some contain harmful substances and should be handled accordingly. Incandescent bulbs pose little or no threat except that of the broken glass and can be dealt with as regular waste. Fluorescent tubes and most discharge bulbs can contain potentially harmful chemicals that should be handled with care and disposed of in accordance with your local waste authority rules and health and safety policies.
- Bulbs should be easy to install and remove from their fittings and should never be forced as this can often result in breakage of the glass.
- Many bulbs contain gases at either greater than or less than atmospheric pressure and may either explode or implode if the glass is broken. This can cause a significant hazard. Bulbs should not be disposed of by breaking them unless appropriate protective equipment is used and environmentally sound disposal methods are followed.
- Do not use halogen or other hot burning bulbs near paper, cloth or other combustible materials that can catch fire.
- Do not look directly at an operating bulb for any period of time; this may cause serious eye injury.

Before surgery, eye patients must be assessed for their suitability for surgery. Taking the pulse allows us to find out what the patient’s heart rate is and to assess the strength, regularity, and character of the pulse. Irregularities might indicate a heart problem and must be investigated.

Taking the pulse also provides an initial recording (a ‘baseline’) that will enable us to compare future measurements and monitor changes in our patient’s condition.

The pulse can be measured at several points in the body. These points are where an artery is situated just under the skin, where it can be compressed against a bone, allowing us to feel each beat.

This article will cover the measurement of the pulse at the radial point (inside the wrist, see Figure 1) as this is the most common point at which to measure the pulse of eye patients.

NOTE: Many things – such as anxiety, pain and fever – can raise the patient’s pulse (heart rate) and certain medications such as beta blockers or digoxin can lower it; all of these reasons should be considered when assessing and recording the patient’s pulse. If you are taking repeat measurements of the same patient, try to measure the pulse under the same conditions each time.

What is normal?
A normal pulse is regular and strong. Heart rates, and therefore pulse rates (number of beats per minute) change with age and can vary between individuals of the same age.

Table 1: Normal pulse rate range, by age

<table>
<thead>
<tr>
<th>Age</th>
<th>Pulse rate (beats per minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn (resting)</td>
<td>100–180</td>
</tr>
<tr>
<td>Infant (resting)</td>
<td>80–150</td>
</tr>
<tr>
<td>Child 26 years</td>
<td>75–120</td>
</tr>
<tr>
<td>Child 6–12 years</td>
<td>70–110</td>
</tr>
<tr>
<td>Adolescent–adult</td>
<td>60–90</td>
</tr>
</tbody>
</table>

You will need
- A watch that has a second hand
- A chart to record the pulse measurement
- A black pen.

Before you begin
1. Wash your hands – this will help to prevent cross-infection.
2. Explain what you are about to do. This will help the patient to understand what is about to happen and will make it easier for them to co-operate.

Procedure
1. Ask whether the patient has walked, climbed stairs, or otherwise exerted themselves in the last 20 minutes. If not, you can proceed. If the answer is yes, wait 20 minutes before taking the reading. This will help to prevent false readings.
2. Make sure the patient is relaxed and comfortable.
3. Place the tips of your first and second finger on the inside of the patient’s wrist (Figure 1).
4. Press gently against the pulse. Take your time to note any irregularities in strength or rhythm.
5. If the pulse is regular and strong, measure the pulse for 30 seconds. Double the number to give the beats per minute (e.g.: 32 beats in 30 seconds means the pulse is 64 beats per minute). If you noticed changes in rhythm or strength, you must measure the pulse for a full minute.
6. Record the pulse rate (the number of beats per minute) in the patient’s notes and describe its strength and rhythm. Compare the pulse rate with the values in the Table 1 and record whether the pulse is normal, slow or fast. Any abnormalities should be recorded and reported to the senior nurse and doctor.
7. Strength of the pulse is a very subjective measurement, but an experienced nurse will compare it with what has been felt previously in other patients. Describe the pulse as ‘weak’, ‘faint’, ‘strong’ or ‘bounding’.
8. Think about the rhythm of the pulse. Is it regular? If irregular, in what way? Cardiac problems may present as a regular missed beat, for example, so is the regularity regular (described as regularly irregular) or is there no pattern (described as irregularly irregular)?
9. Discuss with your patient the result of the pulse measurement and if any further investigations are required.
10. Wash and dry your hands.

Sources
Nursing and midwifery: a practical approach. Sally Huband, Pam Hamilton Brown and Gillian Barber Macmillan Education
Royal Marsden Hospital Manual of Clinical Nursing Procedures
www.clinicalsskills.net