A balanced approach to outcomes, output and outlay – together with strong partnerships – create cataract services that put patients at the centre and deliver better eye health for all.

Although highly effective treatment for cataract has been available around the world for several decades, it remains the leading cause of avoidable blindness. It is completely unacceptable that millions of people are deprived of their right to sight due to a condition that can be cured with a safe, fast, and cost-efficient procedure.

The articles in this issue show that improvement doesn't only rely on new techniques, drugs, or equipment. Instead, improvement is also the result of a coordinated effort by everyone in the eye team to provide a patient-centred service.

The three pillars of combatting vision impairment due to cataract are:

- **Output** – the number of cataract operations performed, often expressed as the cataract surgical rate (the number of cataract operations per million population per year)
- **Outcome** – the results of cataract surgery, i.e., what percentage of eyes achieve good vision after a cataract operation, and the complication rate
- **Outlay** – how much an eye service needs to spend to provide cataract surgery (which will affect how much patients have to pay).

Improving cataract services means addressing all three of these. With a balanced approach to output, outcome, and outlay, it is possible to see major improvements in all three areas.

Outcome monitoring and efficient systems allow this hospital to provide high quality cataract surgery to nearly 50,000 patients per year, while costing patients less than US $10 per eye.

© ASTRID LECK CC BY-NC-SA

NEPAL
About this issue

Unoperated cataract remains the leading cause of blindness and moderate to severe visual impairment worldwide, affecting 94 million people globally. Addressing this urgent need requires a coordinated effort by everyone in the eye team to provide a patient-centred service, increase access to cataract surgery, and improve visual outcomes after surgery. A balanced approach to outcome, output, and outlay – as well as a focus on partnerships – is key, and this issue of the journal offers some helpful pointers and examples.

Contents

1 Improving cataract services: better access, better outcomes, better value
 David Yorston, Fatima Kyari and John Buchan

2 Improving cataract services by asking patients for their feedback
 Amos Kibata Githeko and Stephen Gichuhi

3 Measuring cataract outcomes
 John Buchan

4 Increasing cataract surgical output: my experience at Sabatia Eye Hospital, 2005–2011
 Demissie Tadesse Bekele

5 Improving eye care services: the story of Visualiza Eye Care System
 Mariano Yee Melgar

6 High-volume cataract surgery in Lahan, Nepal
 Reena Yadav, Abhishek Roshan and Sanjay Kumar Singh

7 Improving cataract surgery in Nepal: a learning curve
 Ravindran D Ravilla

8 Using a quality improvement process to improve cataract outcomes
 Chandrashekharan Shivkuma, Hariprtya Aravind and Ravindran D Ravilla

9 Improving cataract surgery: lessons from Nepal
 Reeta Gurung and Radhika Uperti Oli

10 No one left behind: how Colombia is adapting its trachoma programme to reach indigenous populations
 Julian Trujillo-Trujillo, Martha Saboya and Tim Jesudason

11 Improving cataract output in India: a joined-up approach
 Madhu Bhaduria and Arshu Singh

12 PICTURE QUIZ

How can this be achieved?

The key element – as is evident in the articles in this issue – is partnership. First, partnership with patients. More work is needed to understand what matters to patients, so that we can ensure that cataract services are accessible and appropriate to our service users. It is worth considering how you could find out more about what matters to your cataract patients – the answers may surprise you. City Hospital, Nairobi already provides high quality services, but that didn’t stop its leadership from asking patients how they could improve (page 4). The survey highlighted that patients wanted a telephone number to call if they had concerns, and that more patients than expected found the operation painful, prompting a review of their local anaesthesia policy.

The second partnership is with the community. There are numerous examples of engagement with the community in this issue of the journal, and in our previous issue on community engagement. These partnerships can involve working together to promote and publicise cataract services. Community partners may be community organisations, local government, businesses, media organisations, faith-based agencies, educational institutions, and patients who are happy with their cataract surgery. Partnerships can involve collaboration in the delivery of services – using a school as a venue for an outreach eye clinic during the weekend, for example. Members of the community can also be trained to identify cataract patients and to support follow-up care after cataract surgery. The greater the involvement of the local community, the more likely it is that patients will know about the services and trust their local eye care provider. Think about your clinic’s links to the local community. Are there avenues of collaboration that you haven’t explored? Are there strong local organisations that could help to promote or deliver cataract services? What about cost sharing models, such as health insurance?

The third partnership is with hospital management. In hospitals and eye clinics, in both high- and low-income countries, there needs to be a balance between income generation and cost-containment required by managers, and the scope of service provision by clinicians. This can sometimes lead to conflict: as clinicians, we want to provide the best possible services for everyone who needs them, regardless of the cost; however, managers have a responsibility to balance the books...
Effective Cataract Surgical Coverage (eCSC): improving quality, output and access

Governments and international organisations, like the World Health Organization (WHO), need to be able to evaluate how well eye health services are doing in reducing avoidable blindness. In the past, they looked just at quantity: the number of people in a population who had undergone cataract surgery, using a measurement known as Cataract Surgical Coverage (CSC). This compared the number of people who had undergone cataract surgery to those who needed surgery (both operated and unoperated), and expressed this as a percentage. CSC did not measure the quality of surgery: how well the patients could see after their cataract operation.

To ensure that quantity and quality are both measured, ministries of health, WHO and other institutions increasingly want to know the Effective Cataract Surgical Coverage (eCSC): the number of people who can now see well after cataract surgery, expressed as a percentage of those who needed surgery (both operated and unoperated).

In 2021, all WHO Member Countries agreed to a new global target: increasing eCSC by 30 percentage points by 2030.12 This target sets a new standard for the visual outcome of cataract surgery: a presenting visual acuity (PVA) of 6/12 or better, which is more difficult to achieve than the previous standard: PVA of 6/18 or better.1

Increasing eCSC requires that eye units provide high quality surgery – which means routine measurement and reporting of surgical outcomes is now more important than ever. Recording who is coming for surgery is also vital so that we can ensure we are providing equitable access for all, including women and people with disabilities.

Providing people-centred cataract surgery, through outreach services and integration with existing health care services at primary level (as detailed in our recent issues on primary eye health care1 and community engagement4) will also help to improve patients’ awareness and acceptance of surgery, as well as their ability to physically reach the services they need.

With thanks to Elmien Wolvaardt, Jacqui Ramke and Heiko Philippin.

References

Support our work
We rely on subscriptions and donations from charities and generous individuals to carry out our work.
To support us, visit: www.cehjournal.org/donate or contact Anita Shah: admin@cehjournal.org
Published by the International Centre for Eye Health, London School of Hygiene & Tropical Medicine.
Unless otherwise stated, authors share copyright for articles with the Community Eye Health Journal. Illustrators and photographers retain copyright for images published in the journal.
Please note that some articles are published online first and may have been shortened to fit the available space in this printed edition.
Unless otherwise stated, journal content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided that the copyright holders are acknowledged. ISSN 0953-6833.
Disclaimer
Signed articles are the responsibility of the named authors alone and do not necessarily reflect the views of the London School of Hygiene & Tropical Medicine (the School). Although every effort is made to ensure accuracy, the School does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the School in preference to others of a similar nature that are not mentioned. The School does not endorse or recommend products or services for which you may view advertisements in this Journal.

The Community Eye Health Journal is supported by:
Improving cataract services by asking patients for their feedback

Having a positive experience of cataract surgery makes patients more likely to recommend the service to others. Finding out what patients think is worthwhile, as it may result in low-cost improvements that can have a significant impact.

Cataract is the leading cause of blindness globally. The VISION 2020 programme prioritised increasing the number of cataract operations performed and improving service coverage. More recently, the World Health Organization (WHO) World Report on Vision emphasised integrated people-centered eye care. Among the ten key messages of The Lancet Global Health Commission on Global Eye Health was that high quality eye health services are not always delivered. Why does quality matter?

One of the top five challenges in eye health today is improving cataract surgery services: their quality, equity and access. WHO defines quality of care as the degree to which health services for individuals and populations increase the likelihood of desired health outcomes and describes good quality services as effective, safe, people-centered, timely, equitable, integrated, and efficient. Good quality services attract more patients, which is vital for improving demand for, and uptake of, cataract services – which is important if we are to address the surgical backlog in many countries.

But how can we improve? Monitoring clinical outcomes is an important first step (see the article on page 6). If you are already doing this, the next step is to look at patients’ experience and how that can be improved. The case study below, although imperfect, shows that speaking to patients can highlight improvements that can be made at low cost while still significantly improving patients’ experiences. Ideally such surveys should be repeated annually so that improvements can be tracked.

Case study: Learning from our patients

City Eye Hospital is a busy day surgery centre in the city of Nairobi, Kenya that sees around 200 patients every day. Most cataract operations are done by phacoemulsification under topical anaesthesia. In 2022, we decided to find out more about our patients’ experience of the service, with the aim of finding out how our service could be improved.

Because we were short on staff time, we looked at questions researchers in other countries had asked their patients about their experience before, during and after cataract surgery and created a patient satisfaction questionnaire that we thought would be reasonably relevant in our setting. Our aim was not to produce published research, but rather to inform ourselves about how we could improve.

Over three days in June 2022, a customer service staff member asked patients waiting in different areas in the hospital whether they were willing to be interviewed. If a patient agreed, and had received cataract surgery within the previous month, the staff member asked them to rate, on a scale of 1 to 5, how satisfied they were with a set of statements about their care (see panel). The statements included aspects of care...
before surgery, on the day of surgery, and after surgery. A total of 62 patients completed the questionnaire over the three days.

Patients who were ‘satisfied’ or ‘very satisfied’ were graded as being happy with the service and those who were ‘unsatisfied’ or ‘very unsatisfied’ were graded as being unhappy with the service.

Patients were happy about most aspects of the service, and no-one was ‘very dissatisfied’ with any aspect, which was encouraging. All were happy that they could see after surgery: 77% were very satisfied and 23% were satisfied.

However, we were keen to find out what aspects patients were less satisfied with, as that showed where we could make improvements.

The results show that the patients’ main source of dissatisfaction is not their clinical care. Patients were unsatisfied with the following:

- A lack of provision of a cataract surgery brochure before surgery that they or a family member could read (86%)
- Pain during surgery (58%)
- Lack of accessibility by phone if they had questions before surgery (54%)
- Long waiting times in the queue to open a file (22%)
- To see the doctor (22%) and when waiting for your turn on the day of surgery (23%)

Only pain management required a change in clinical practice. One possible solution would be to train nurses to give sub-Tenon’s blocks prior to surgery, and we are currently investigating this.

We have also addressed patients’ dissatisfaction with the absence of a contact number – we now give them a number to call if they have concerns before or after surgery. Shortening waiting times and providing written information about cataract surgery are more difficult to address, but we are looking at ways this can be done.

Lessons for the future

Although we used a five-point scale, very few of the responses were in the middle (neutral), as we would normally expect. This suggests that having a staff member administer the questionnaire may have influenced patients’ responses. For example, patients may have been worried that a negative response could influence the care they receive in future. We could improve on this next time by asking someone to help who is independent of the hospital, and is perceived as being independent, to administer it.

Another limitation of our approach is that we chose the questions based on what we thought was important at the time, which might not reflect all of the concerns our patients have. It is possible we could have addressed this by adding an open-ended question at the end, to find out what else patients think we should have asked about. In future, we could also ask someone experienced in qualitative research to speak to smaller groups of patients first, to find out what is important to them, and then use the results when drawing up the questionnaire.

Although our results cannot be generalised to other clinics, or used to compare the patient satisfaction in this eye hospital with the results from other eye units, we plan to repeat key questions in 12 months’ time to check whether the changes we made have led to better patient satisfaction.
Measuring cataract outcomes

Measuring the outcomes of cataract surgery can drive improvement and patient satisfaction. But is visual acuity measurement the only way?

Cataract surgery can be a frightening prospect for many patients. Hearing from others in their community who are happy with the results can have a significant impact and increase the overall uptake of cataract surgery in that community. To achieve this, we need to deliver cataract services that are successful in the opinion of the most important people: the patients.

But how can we know whether our patients are happy, and what matters to them?

A patient-centred approach has two components:

1. Patients’ experience of the cataract service before, during and after surgery. This can include comfort/pain, cleanliness, communication, and many other aspects of care. We cover this in more detail in another article in this issue.
2. The visual outcome of surgery, which surgeons need to know so they can check their surgery is of good quality. This will be the main focus of this article.

Visual outcome

The success or failure of cataract surgery has traditionally been assessed by measuring a patient’s presenting visual acuity after surgery.

Visual acuity is an essential benchmark for the quality of cataract surgery. We should all aspire to meet the WHO’s new recommendation that 80% of eyes operated on should have a presenting visual acuity of 6/12 or better after surgery.1 In fact, by measuring and publicly reporting the visual acuity outcomes of cataract surgery, the United Kingdom’s National Health Service was able to significantly improve outcomes by introducing a National Ophthalmology Database Cataract Audit in 2014. Likewise, tools such as the free BOOST cataract app (https://boostcataract.org) allow surgeons in low- or middle-income settings to monitor cataract outcomes and receive feedback without incurring additional costs.2 Publishing these data publicly can improve outcomes and boost public confidence – which in turn improves the uptake of cataract surgery.3

In most low-income settings, patients tend to come for surgery when their cataract is already advanced. For them, a presenting visual acuity outcome of better or equal to 6/12 (the new World Health Organization WHO’s new recommendation that 80% of eyes operated) can provide a reliable measurement of the improvement experienced by each patient.4

However, in high-income settings, the excellent visual acuity outcomes and increased uptake of cataract surgery, combined with the availability and affordability of surgery, has led to early uptake of services. For example, at least a third of patients undergoing cataract surgery in the UK have pre-operative visual acuity of 6/12. For them, visual acuity is a less useful indicator of the success of surgery.5

Visual acuity is usually measured by asking patients to read black letters on a white background at six metres – a task that few patients ever need to do in real life. Patients with higher pre-operative visual acuity will be more interested in their visual function: how the operation has improved their ability to do everyday tasks such as cooking, reading, or driving. Distance visual acuity alone, therefore, is not a perfect measure of success for, as it doesn’t tell us much about the patient’s perspective – how they perceive their own vision and visual function, and the impact on their quality of life.

Patient-reported outcome measures (PROMs) are a potential solution to this dilemma.4 PROMs are short questionnaires given to patients before and after surgery to ask about their own perception of their vision and the impact of their vision on their quality of life; this is expressed as a numerical score.

Although perception of vision and quality of life are subjective (i.e., individual to each patient), PROM questions are developed through a robust process of research, testing, and mathematical analysis, which means that the scores produced when the questionnaire is administered before and after surgery can provide a reliable measurement of the improvement experienced by each patient.

Creating PROMs requires the input of patients during development to ensure they consider patients’ visual needs, which will vary depending on factors such as patients’ level of literacy or the need to be able to drive.

PROMs put patients’ perception of their own vision at the centre. This encourages clinicians to listen to patients and helps them to understand how patients’ vision impacts their quality of life, which in turn permits health care professionals to develop services that meet the needs and expectations of patients – a very desirable outcome.

The importance of monitoring quality

Faced with a high prevalence of cataract blindness, increasing the quantity of surgery is often essential. However, this needs to be accompanied by monitoring the quality of what is being done.

For further reading on outcome monitoring see https://bit.ly/CEHJ-cat

References

Sabatia Eye Hospital, located in a small rural village in Vihiga county, Kenya, is the main eye hospital serving western Kenya, an area with a population of over 4 million people.

When I joined the hospital as medical director in 2005, it was performing an average of 1,500 cataract operations a year – far below its potential, and also far below the number needed to serve the patients in its catchment area (see panel). Sabatia’s financial situation was also precarious.

To enable the hospital to offer high-quality, high-volume eye care services, particularly cataract surgery, we had to work hard to put in place suitable administrative, human resources, financial, and management systems and create a supportive environment where everyone could work together as a team.

Even with full support from hospital staff members, the hospital board, and the international non-governmental organisation CBM, it took almost a year to develop and strengthen these systems and get the hospital on the right track.

Our first aim was to increase the number of cataract operations per year, while maintaining quality.

To achieve this, we needed to have more patients and treat them more quickly.

We made three key immediate changes to our policies and ways of working:

1. The outpatient clinic was kept open during working hours (instead of just a few hours per day).
2. Cataract patients arriving at the clinic without appointments (i.e., as ‘walk-ins’), whether referred by someone or on their own, were admitted and even operated on that same day, provided they were fit and willing to undergo surgery.
3. Patients were discharged the next day, which went against the trend of keeping them in the hospital for several days.

However, we knew that we needed to do more.

Outreach services

As Sabatia is in a rural area, it is not easily accessible. To improve access, particularly for people in underserved areas and communities, the hospital developed partnerships with churches, hospitals, health centres, companies, and community organisations in the surrounding areas. These helped us by:

- Talking to the community about cataract and encouraging them to come for surgery (‘mobilisation’) using different means, such as via local radio programmes, at church gatherings, and at public events and spaces, such as market places.
- Sponsoring operations. Local companies and Lions clubs provided funding to cover the costs of patients who could not afford surgery.

Target cataract surgical output

How can we determine how many cataract operations an eye unit should aim to perform per year? This is known as the ‘target cataract surgical rate’ and is calculated by multiplying the clinic’s catchment population by the cataract surgical rate per million population needed to reduce visual impairment due to cataract in that region or country.

A study carried out in 2013 estimated that the target cataract surgical rate needed to eliminate cataract visual impairment in Africa (at the level of 6/18) ranges between 1,200–4,500 operations per year per million population. This figure is based on estimates of the prevalence of visual impairment due to cataract in a population (e.g., using a Rapid Assessment of Avoidable Blindness or RAAB survey), as well as the number of new cases of cataract that is expected to develop in each population every year (the incidence). Incidence depends on many factors, including the age structure of the population.

To estimate the cataract surgical rate needed in Western Kenya, therefore, multiply the catchment population (approximately 4 million) by the estimated cataract surgical rate per million population (1,200–4,500). This gives an estimated target cataract surgical rate of between 4,800 and 18,000 operations per year for the region.
Volunteering at outreach events by helping us with screening, referring, and making appointments for patients who need surgery.

Offering spaces to serve as outreach surgical facilities when we held surgical camps in health centres, district hospitals, and in schools.

Offering their employees’ time to support the hospital team in the following areas: counselling patients and making appointments for them, admissions, the operating theatre, and postoperative follow-up.

Intensifying efforts and strengthening the output and quality of the base hospital and outreach services helped to build a better reputation for the hospital. This allowed us to become increasingly well known as a major eye care service provider in western Kenya. This not only increased the number of patients coming for eye care services, but also helped to develop the capacity of the hospital by bringing in more material and financial support from charities and others. Whereas the cost of surgery was initially subsidised by charities, the revenue generated thanks to the increased number of patients could be used to further improve quality, buy equipment, and subsidise patients who could not afford surgery.

Primary eye care training

The hospital started its own primary eye care training programme (an ophthalmic skills upgrading course) in order to establish primary eye care services at health centres and district hospitals in the catchment area. This has helped in identifying and referring more patients with cataract to the base hospital and outreach locations. It also improved patient mobilisation for surgery, facilitated better follow-up, and significantly improved cataract surgical output and outcomes.

All these strategies and efforts improved our annual surgical output to over 5,000 operations per year in 2011. At the same time, the centre generated more revenue, which further helped us to motivate staff members, buy better quality equipment, develop better infrastructure, carry out more cataract operations with better outcomes, and expand the eye care service.

What should you do when a blind person comes to your clinic and has no means to pay for your services? Could you leave this person in the dark?

These are some of the questions we faced in our early years as a small, private eye clinic, with only two ophthalmologists and two employees, carrying out just 67 cataract operations a year in 1998. We wanted to grow, and help more people, but we had many questions. For example, how could we help people, and still be sustainable? How could we reach the most vulnerable groups of people in our area?

In 2002, we decided to start an eye care model that had never existed in Latin America before: a private practice that offered subsidised care to those unable to pay for services. Now, two decades later, we have 227 employees, including 24 ophthalmologists and 20 optometrists, working in two main hospitals and eight vision centres, performing over 4,000 cataract operations and 6,000 other procedures a year.

How we got here

In the beginning, we did a lot of planning and set goals for ourselves, the first of which was to become...
self-supporting (financially sustainable) within the first six months. We also communicated with our staff members regularly to ensure everyone shared the same values. When you want to serve patients, it’s important to create a culture where the people working for you feel connected; where they think about what it means to come to work. Then they will come to the clinic to change people’s lives; to serve and give their best.

We were not afraid to evaluate ourselves and to change our ways of working, if needed. We recognised that we could only improve if we introduced protocols and standardised all our procedures (not only the clinical and surgical procedures), and if we kept records of everything we did. It is easier to detect problems in the system when you know exactly what everyone is doing! Because we kept accurate records, we could measure how many new patients were coming in, how many were coming for follow-up visits, the acceptance rate for our services, how many outreach activities we provided (and how effective they were), the financial status of the service, and so on. This allowed us to track our progress and continue to improve.

For example, in the beginning, the proportion of patients who accepted surgery to restore or preserve their vision was just 30%. In order to increase the acceptance rate, we introduced a counsellor. This was a local person, trained by us, who explained everything that the patient needed to know about a surgical procedure, with patience and care, and in a way that was easy for the patient to understand. By using good communication skills, the counsellor helps to reinforce the doctor’s recommendations and increases compliance. As a result, 65% of patients who are offered surgery now agree to go ahead with it. The counsellor is one of our most valuable team members!

Appropriate technology

We use appropriate technology. While everybody around us was doing phacoemulsification, we started using the manual small-incision cataract surgical technique we learnt at Aravind Eye Care System in India. The results were amazing: postoperative visual acuity was as good as with phacoemulsification, but at less than 25% of the cost. Manual small-incision cataract surgery is affordable because it doesn’t require special machines and equipment. It also helps to increase the number of patients you can serve, because you can carry out the procedure in any standard operating room at a minimal cost for the patient. We have so much confidence in this method that it was my method of choice when I performed cataract surgery on my own mother.

Because the cost per operation was lower, and we could carry out more operations; this created additional income that helped us to grow and diversify by introducing other services, such as refractive error and diabetes services. Diabetes is becoming a big problem in Guatemala, so we established a department for diabetes patients where there are nutritionists, endocrinologists, and retinal specialists. This has generated even more income, which means we can now provide outreach services in areas where eye care is not easily accessible.

Outreach

Outreach is a key component of our strategy. It is a great marketing technique and an effective tool for reaching those most in need. We visit different places to find patients who don’t have access to eye care and might need cataract surgery or spectacles, or who have other eye conditions. Recently, we trained our staff members in sign language and we are now receiving hearing-impaired people as well. Having happy patients makes everything easier.

In the future, we would like to establish even more eye hospitals and vision centres across the nation so we can continue to provide high quality eye care to all.

Keys to success

- A focus on patients, not profits will bring in more patients, thereby increasing the number of operations you can perform (your output). This will lead to greater financial sustainability.
- Higher output levels mean higher quality surgery (practice makes perfect). Good outcomes makes for happier patients who will recommend your services to friends and family members.
- Build a team that believes in what you are doing.
- Choose surgical methods that are affordable for patient; appropriate technology is affordable technology.
- Outreach is the key to reaching patients who would otherwise never have surgery.
- Constantly evaluate yourself and your organisation. Ask yourself: Where are we now? What can we do better? Is my service good enough for me and for my own family?
High-volume cataract surgery in Lahan, Nepal

The efficient, team-based approach to cataract surgery practiced at Sagarmartha Choudhary Eye Hospital increases output and reduces outlay by ensuring that everyone’s time is used efficiently – thereby making surgery more affordable.

Sagarmartha Choudhary Eye Hospital (SCEH) is a 450-bed hospital in eastern Nepal, in the terai (lowlands) region near the border with India. It served more than 48,000 cataract patients in 2021: 60% from Nepal and 40% from India. During the peak season, 300–400 cataract operations take place every day, six to seven days a week. On average, surgeons perform 60–70 cataract operations per day, or up to 100 operations in a 12-hour shift during the peak season.

How is high output achieved?

The whole process is highly organised; every staff member, from surgeon to security guard, is clear about their role in the patient journey. Each surgeon works between two operating tables simultaneously. By the time a surgeon has removed the first patient’s cataractous lens and tied the conjunctival suture, the next patient, on the adjacent table, is ready for their lens to be removed.

Surgeons use the ‘Fishhook’ surgical technique to deliver the nucleus, and the entire procedure takes just 3–4 minutes to perform on the fully prepared patient.

Clinical and surgical team

The clinical team consists of two general consultant (senior) ophthalmologists and five consultant ophthalmologists who are also subspecialists: a paediatric ophthalmologist, a cornea subspecialist, a glaucoma subspecialist, and two retina subspecialists. All the subspecialists split their days between cataract surgery and their own subspecialty.

There are also seven anterior segment fellows: recently graduated ophthalmologists from Nepal who are at different stages of a rigorous 2-year in-house training programme in cataract surgery (see panel).

Ophthalmic assistants at SCEH have an extended role. They perform a detailed eye examination of each patient and take an ocular and systemic history. The level of difficulty of the operation and the likelihood of complications are then discussed with the senior supervising surgeon, who decides which patients to assign to which trainees, based on their level of experience. This approach ensures high quality and fewer complications.

SCEH also employs eye health workers (EHWs) who are trained to perform pre-operative checks and prepare patients for surgery. This includes giving the peribulbar block, applying the bridle suture (superior...
rectus muscle traction suture), placing the speculum, performing peritomy (opening the conjunctiva), and cauterising the highly vascular scleral tissue.

Managing quality
Every three months, cataract operations are audited and staff present and discuss difficult/challenging cases to improve practice.

If a surgeon or trainee surgeon encounters complications, a senior surgeon will step in if needed. The surgeon responsible is asked to follow the patient’s progress closely and give a presentation that includes a discussion of the complication and how it could have been avoided and/or better managed (this can include reviewing video recordings). The trainee surgeon may then be supported with closer supervision if needed.

Cataract surgical outcome is measured on the first day after surgery, at the end of the first month after surgery, and at the three-month follow-up visit. At the one-month follow-up, more than 60% of all cataract patients have uncorrected visual acuity of 6/18 or better.

Outlay
Ordering consumables in bulk (made possible due to the high volume of surgery) helps to keep the costs down. Most surgical instruments are sterilised and re-used, e.g., keratome and crescent blades (typically can be used for five cases), Simcoe cannulas (cleaned then steam sterilised and reused).

The greatest saving in terms of outlay is due to the efficiency with which patients move through the eye care system. The systems developed at SCEH, such as training eye health workers to prepare patients and give anesthesia, and setting up the operating theatre so one patient is being prepared while the surgeon is still operating on another patient, reduce the time the patient is in theatre, which means that everyone’s time is used more efficiently. This reduces the overhead costs per patient and therefore the overall outlay, which supports SCEH to offer surgery at an affordable price.

Sustainability
SCEH has a separate outpatient department for patients on higher incomes and offers a range of eye services, including phacoemulsification cataract surgery. Income from this department subsidises low-income patients. SCEH also benefits from donor agencies who support the costs of equipment, human resource development, and surgical consumables.

Supporting women
Even though women and girls in Nepal have a greater burden of blindness than men and boys, they are less likely to visit eye hospitals, for a variety of reasons. SCEH monitors uptake of cataract services separately for male and female patients, and has put in place measures to make the facilities female friendly, for example by offering separate registration counters, queues and toilets for men and women, an enclosed breastfeeding space, and a female counsellor for female patients. At present, around 3% more cataract operations are performed in women than in men.

The authors would like to thank Astrid Leck and Elmien Wolvaardt for their contributions to this article.

Cataract surgery training
Cataract surgery trainees, known as anterior segment fellows, undergo a rigorous two-year training programme.

Candidates must be ophthalmologists registered with Nepal’s Medical Council and undergo a written exam and interview at SCEH before being considered for the programme. The successful candidates must also pass the SCEH protocol exam before being eligible to examine patients in the outpatient department (OPD).

Surgical training starts after one month of OPD exposure. Training begins with two days of observing surgery in the operating theatre, followed by a week of suturing practice in the wet lab. After that, the trainee surgeons perform skin suturing, under supervision, in adult dacrocystorhinostomy patients. Once confident in skin suturing, they are given opportunities to perform supervised corneal suturing in adult patients with corneal or corneoscleral injury who have minimal visual potential.

Once hand-eye coordination is well established, and fellows are comfortable handling ocular injury surgery independently, they are given selected cataract surgery cases.

Cataract surgery training is started systematically. Fellows are trained in each step under supervision, for a period of one month. After evaluation by the supervisor/mentor, they are eligible to perform independent cataract surgery. Complications are managed by the supervisor/mentor initially, and complication management is gradually handed over to the trainees, depending upon their individual performance.

References
The Aravind Eye Care System (AECS) has an annual output of over 300,000 cataract operations a year through its network of 14 hospitals. More than 60% of all operations are subsidised or at no cost to the patient, and they are performed using the manual small-incision cataract surgery (MSICS) technique.

Thanks to advances in surgical techniques and intraocular lens (IOL) technology, cataract surgery can now restore sight and address refractive error. Given that many patients may not have access to spectacles, or be able to afford them, it is important to achieve a good presenting visual acuity after surgery. In recognition of recent evidence about the impact of mild vision impairment (visual acuity of <6/12 to 6/18) on the everyday functioning of individuals,1,2 the World Health Organization now recommends a threshold for presenting visual acuity after cataract surgery of 6/12 or better.

As part of Aravind’s ongoing cataract quality improvement strategy, we set out to address postoperative presenting visual acuity by testing a different approach to biometry. Biometry is the process of taking measurements of the eye to predict the power of IOL that would be needed by each patient. Accurate prediction of IOL power is one of the major factors that determines presenting vision acuity after cataract surgery. The accuracy of a biometry service is measured by recording the percentage of patients for whom the difference between the target refraction (estimated during biometry) and the refraction achieved after surgery falls within a specified range of prediction error; this is expressed as a spherical equivalent, in dioptres (D).

Our quality improvement process includes these steps:
1. Identify the problem (ask: what needs to change?) and gather baseline data on outcomes/outputs before changes are made
2. Set standards based on agreed benchmarks
3. Decide on the methods or equipment needed to make an improvement
4. Introduce changes and train personnel
5. Measure impact
6. Gather data to drive a process of ongoing improvement.

Identifying the problem and gathering baseline data

Until 2012, IOL power was calculated using contact or applanation ultrasound biometry methods as this is easy and quick to perform, especially in high-volume services (Figure 1). However, because this method involves direct contact with the cornea, compression of the cornea is possible, which can cause reading errors.

Aravind uses an electronic medical record-keeping system called CatQA to monitor and continually improve outcomes and processes. When we analysed the CatQA data from our hospitals, we found that just 40.4% of the patients who had undergone ultrasound biometry and MSICS had a prediction error within ±0.5D, and 85% had a prediction error within 1.0D.
Setting standards
We decided to base our standards for the accuracy of biometry on the benchmark set by the UK’s National Health Service (NHS): a prediction error within ±0.5 D in 60% of patients, and within ±1.0 D in 90% of patients.¹

Finding the methods or equipment needed to make an improvement
There is good evidence² that immersion ultrasound biometry performs better than contact ultrasound biometry and can be used in all cataract types (although optical biometry performs better than ultrasound overall, it doesn’t work in advanced cataract – which is more typical in low-income settings such as ours).

Based on this evidence, and our available human and financial resources, we took the decision to convert from applanation ultrasound biometry to immersion ultrasound biometry in all 14 eye hospitals.

Introducing changes gradually
Immersion biometry was implemented between 2013 and 2018, in just a few hospitals at a time, by first upgrading the equipment and then retraining the staff members who perform biometry. Training was structured and staff were closely monitored. By the end of 2018, all 14 hospitals were performing immersion ultrasound biometry (Figure 2).

Measuring impact
To measure impact, we collected data about the accuracy of IOL power prediction a year after introducing immersion ultrasound biometry and again in 2021. The impact of the change was evident when we compared this with the baseline data from 2012 (Table 1).

Table 1 Patients seen in a 12-month period with prediction error within ±0.5 D and ±1.0 D (the benchmarks are 60% within ±0.5 D and 90% within ±1.0 D)

<table>
<thead>
<tr>
<th></th>
<th>Prediction error within ±0.5 D</th>
<th>Prediction error within ±1.0 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact biometry (2012)</td>
<td>46,278 (40.4%)</td>
<td>97,410 (85.0%)</td>
</tr>
<tr>
<td>Immersion biometry 1 year after it was introduced</td>
<td>84,036 (54.6%)</td>
<td>147,758 (96.0%)</td>
</tr>
<tr>
<td>Immersion biometry (March 2022)</td>
<td>71,871 (67.7%)</td>
<td>101,874 (96.0%)</td>
</tr>
</tbody>
</table>

Following the adoption of immersion ultrasound procedure across all 14 hospitals, we found that, of the 153,888 patients who had undergone immersion biometry, 54.6% now had a prediction error within ±0.5 D (up from 40.4%) and 96.0% had a prediction error within ±1.0 D (up from 85%).

Ongoing data gathering and evaluation
We continued to routinely monitor the prediction error and make improvements where needed. (Figure 3), using a process of outcome monitoring and quality improvement. Other opportunities for quality improvement, including using better IOL calculation formulae and offering staff members further biometry training, were responsible for some of the additional improvements seen between 2019 and 2021 (Table 1).

In 2021, despite carrying out fewer operations, on more advanced cataracts (due to the COVID-19 pandemic), we significantly exceeded the NHS benchmarks with 68.2% and 94.9% of patients within ±0.5 D and ±1.0 D prediction error, respectively (Table 1).

There was a corresponding improvement in the proportion of patients achieving better postoperative visual acuity once we started using immersion biometry. The proportion of patients who had uncorrected postoperative visual acuity of 6/18 or better improved from 63.0% in 2012 to 83.9% in 2021 (Table 2). Similarly, the proportion of patients with uncorrected visual acuity of 6/12 and better increased from 31.0% in 2012 to 59.8% in 2021 (Table 2).

To conclude, this process of patient-centred quality improvement promoted patient safety, treatment effectiveness, and efficient use of resources. The constant monitoring of outcomes provided the information necessary to continuously improve, refining the quality processes in ways that were often not expensive (e.g., using better IOL calculation formulae). The first step in the process is identifying where opportunities exist to improve, which will be different for each institution.

We would encourage everyone involved in cataract surgical service provision to be in this constant quality improvement cycle, as this helps to achieve the best outcomes for patients, irrespective of the volume of cataract surgery.

Table 2 Patients seen in a 12-month period with uncorrected visual acuity (UCVA) of 6/18 or better and 6/12 or better

<table>
<thead>
<tr>
<th></th>
<th>Number (and percentage) of patients achieving UCVA of 6/18 or better</th>
<th>Number (and percentage) of patients achieving UCVA of 6/12 or better</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact biometry (2012)</td>
<td>114,560 (63.0%)</td>
<td>34,936 (31.0%)</td>
</tr>
<tr>
<td>Immersion biometry (2021)</td>
<td>89,560 (84.4%)</td>
<td>61,587 (58.0%)</td>
</tr>
</tbody>
</table>

Acknowledgements
We acknowledge the contributions of Mr Thulasisingh Axello, Executive Director and Ms Divya Ramsamy, Senior Faculty of Lions Around Institute of Community Ophthalmology (LAICO), AECs Madurai.

References
Reducing the costs per patient by increasing the volume of cataract surgery

When eye units increase their cataract output, a small increase in the outlay (for consumables and IOLs) can drastically increase income and/or reduce costs for patients.

Cataract is the leading cause of avoidable blindness worldwide. Since the burden of cataract blindness is greatest in the communities who are least able to afford eye care, cost is a major barrier to patients accessing cataract surgery. The financial barriers to patients accessing cataract surgery may be greater in rural areas, as additional travel, accommodation, and food costs are often incurred. Lack of access to cataract surgery can be financially devastating, often resulting in reduced economic potential because of vision impairment. Thus, designing more accessible and affordable cataract services is essential for tackling inequalities and overcoming poverty.

The aim of this article is to discuss high-volume cataract surgery as a strategy for lowering the cost of cataract surgery per patient. High-volume cataract surgery does not have an absolute definition, but is often considered as a service that carries out significantly more cataract operations than centres in the surrounding area. Cataract surgery costs can be divided into the costs of consumables (such as intraocular lenses, medication, anaesthetics, and disposables) and the costs of infrastructure and salaries. Each cataract operation uses approximately the same amount of consumables, therefore the yearly cost of consumables varies in line with the number of cataract operations performed in that year.

The cost of infrastructure and salaries is typically larger than the costs of consumables and must be paid regardless of the number of cataract operations performed each year. Examples of infrastructure and salary costs include staff salaries, equipment, cleaning, and building maintenance.

Although increasing the yearly number of cataract operations (the cataract volume, or output) will increase the total yearly cost of consumables, the cost of infrastructure and salaries remains fixed. By carrying out more operations per year, the infrastructure and salary costs—which can make up the bulk of the total cost of surgery in smaller centres—is therefore shared between more patients, bringing down the cost per patient for an individual cataract operation. Increasing the cataract volume also enables further reductions in the cost per operation through taking advantage of ‘economies of scale’ such as bulk purchasing of consumables: by buying a large number of items at once, lower prices could be negotiated, further reducing the cost per operation.

Growing your surgical output

A key assumption of high-volume cataract surgery is that most cataract services have unused capacity. Estimates of East African cataract services suggest that, although surgeons currently perform fewer than 300 operations each per year, they could perform 500 to 800 per year if improvements were made to management systems. This would have to be matched by increasing the number of patients who come for surgery, as detailed elsewhere in this issue and the previous issue on community engagement. Since staff salaries are a major fixed cost, optimising the number of operations performed per surgical day by theatre teams is an effective strategy for reducing the cost per eye.
Hypothetical example: a cataract service with an annual output of either 500 or 800 operations

Here is a hypothetical example of a cataract service where the yearly infrastructure and salary cost is $25,000 per year, and the cost of consumables for one cataract operation is approximately $30. The total cost of one cataract operation can be calculated by dividing the total yearly cost of infrastructure and salaries ($25,000) by the number of operations per year, then adding the consumables cost (see the formula in Figure 2).

Figure 2 Calculating the cost of one cataract operation

\[
\text{Total cost of one cataract operation} = \frac{\text{Total yearly infrastructure and salary cost}}{\text{Number of operations per year}} + \text{Consumables cost for one operation}
\]

\[
= \left(\frac{\text{US $25,000}}{\text{Number of operations}} \right) + \text{US $30}
\]

Figure 3 Changes in the cost of a single cataract operation as the number of operations per year increases

Table 1 Cost per cataract operation for an annual cataract volume (operations per year) of 500 and 800, respectively

<table>
<thead>
<tr>
<th>Annual cataract volume</th>
<th>500 operations per year</th>
<th>800 operations per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumables cost per operation</td>
<td>$30</td>
<td>$30</td>
</tr>
<tr>
<td>Infrastructure and salary costs per operation</td>
<td>$25,000 ÷ 500 = $50</td>
<td>$25,000 ÷ 800 = $31.25</td>
</tr>
<tr>
<td>Total outlay per operation</td>
<td>$80</td>
<td>$61.25</td>
</tr>
</tbody>
</table>

Taking the examples in Table 1, for 500 and 800 operations per year, we can work out the costs (or outlay) and profit per operation. Say the hospital charges patients $85 per cataract operation.

- If the annual cataract volume is 500 cataract operations per year, the outlay is $80 per operation ($30 for consumables + $50 for infrastructure and salaries). If the hospital charges $85 for cataract surgery, it makes a profit of $5 from each operation.
- If the annual cataract volume is 800 cataract operations per year, the outlay is $61.25 per operation ($30 for consumables + $31.25 for infrastructure and salaries). If the hospital charges $85 for cataract surgery, it makes a profit of $23.75 from each operation.

Table 2 Annual cost, income and profit of a cataract service performing either 500 or 800 operations per year

<table>
<thead>
<tr>
<th>Annual cataract volume</th>
<th>500 operations per year</th>
<th>800 operations per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumables cost (annual)</td>
<td>$15,000</td>
<td>$24,000</td>
</tr>
<tr>
<td>Infrastructure and salary costs (annual)</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Total outlay</td>
<td>$40,000</td>
<td>$49,000</td>
</tr>
<tr>
<td>Total income @ $85 per operation</td>
<td>$85 x 500 = $42,500</td>
<td>$85 x 800 = $68,000</td>
</tr>
<tr>
<td>Total profit</td>
<td>$2,500</td>
<td>$19,000</td>
</tr>
</tbody>
</table>

Additional profits generated by increasing the number of cataract operations could be used to subsidise patients who would otherwise struggle to afford surgery, or could be reinvested in services to make them more sustainable.

References

Implementing gender-responsive strategies and reducing the cost of eye care are necessary to improve women’s access to eye care services.

Strategies to promote access to eye care for women in remote and marginalised areas in five districts of eastern and far-western Nepal, including the hill regions and the terai (lowlands). The strategies were delivered through two intervention packages, from 2018 to 2020.

The first intervention package focused on the delivery of a set of strategies that collectively sought to address the ‘awareness’ and ‘acceptability’ dimensions of access, by enhancing women’s experience of care and their awareness of services. This included:

- making eye health facilities female-friendly by setting up separate queues and toilets for men and women, as well as an enclosed breastfeeding space
- appointing a focal person to deal with gender issues within each hospital
- mobilising and training female community health volunteers to carry out eye health promotion and referral
- training technical and health personnel at eye care facilities
- hosting women-focused eye health awareness events in selected community eye care centres
- promoting eye health through mothers’ groups
- distributing information, education, and communication (IEC) materials
- reaching out through mass media campaigns on local FM radio services
- conducting outreach programmes.

The second intervention package focused on the additional benefits associated with reducing the non-medical, out-of-pocket costs associated with eye care, thereby addressing the ‘affordability’ dimension of access. This included:

Women in Nepal bear a greater burden of blindness than men, but are less able to access the eye care they need. NEPAL
Data were collected at baseline (before the packages were implemented) and at the end of the study period, using a mixed method approach at the level of service providers and the community. The quantitative results were analysed using the difference-in-differences method, which compared the changes observed at the intervention sites with that of the control. The results were further supported by qualitative findings that were transcribed, reviewed, and analysed manually by identifying themes and categories.

After one year of the intervention, it was observed that – in the intervention sites – awareness-raising activities for women increased their knowledge about cataract. The work of female community health volunteers at the community level also led to an increase in women’s self-reported autonomy in decision-making about accessing eye health care, and women cited female community health volunteers as a preferred source of eye health information. Most importantly, travel barriers decreased after intervention, with the provision of financial support to cover the travel costs of accessing eye care. However, the interventions could not increase women’s access to cataract surgery at distant tertiary eye hospitals, with women citing household responsibilities as the main barrier. Instead, there was a surge of female service seekers in the outreach camps that were closer to their homes.

Based on the findings from the trial, the following measures could be adopted by eye health service providers to reduce the gender disparity in eye care access in other parts of Nepal and in countries with rural, marginalised populations, and where women have to depend on their male counterparts for decision-making.

At the institutional level

- Regular communication should be established with local governments and local health facilities to promote community-based eye health programmes and strengthen the referral mechanism in collaboration with local female community health volunteers (where available) and other stakeholders.
- The integration of cataract referral programmes with other local health programmes, where appropriate and feasible, can reduce staff effort, increase coordination, reduce the time spent on programme activities, and possibly increase the coverage area.

At the community level

- Regular communication should be established with local governments and local health facilities to promote community-based eye health programmes and strengthen the referral mechanism in collaboration with local female community health volunteers (where available) and other stakeholders.
- The integration of cataract referral programmes with other local health programmes, where appropriate and feasible, can reduce staff effort, increase coordination, reduce the time spent on programme activities, and possibly increase the coverage area.

At the national level

In Nepal, there is a strong structural network of primary health care centres across all the administrative units. This study showed that women could be reached and encouraged to use eye care services through the community. Thus, integrating eye care services into existing primary health care programmes will increase the availability of eye care at the grassroots level, to which women have easier access.

“Awareness-raising activities for women increased their knowledge about cataract.”

References

Increasing demand for cataract surgery: lessons from a systematic review

Research provides hints but no solid evidence about how to increase demand.

Stimulating demand for surgery is critical for maximising the effectiveness and efficiency of cataract services, as explained elsewhere in this issue. Programmes that do not manage to achieve optimum uptake of cataract surgery may be wasting precious resources on patient mobilisation and screening approaches which do not result in sight-restoring surgery.

In 2020, Sightsavers conducted a systematic review\(^1\) to identify factors associated with the uptake of cataract surgery and strategies to facilitate demand for surgery in low- and middle-income countries. Out of 18,530 records identified through a search of electronic databases, only seven papers met our inclusion criteria. Given the scale of the problem of cataract blindness, this makes it a neglected area of research. Two studies each were conducted in China and India, one each were from Ghana and Madagascar, and one was a multicountry study conducted in Kenya, Bangladesh, and the Philippines. Two of the studies were randomised controlled trials (RCTs) and the rest were observational studies.

The rates of surgery uptake reported in the studies varied greatly, from 14.4% in north-western China to 91.7% in southern India, but some factors were suggested as increasing demand for surgery.

At the individual level
Uptake of surgery was lower among women and older patients. There may be other factors that are also important in a specific setting, such as educational level or marital status.

At the community level
The opinions of ‘significant others,’ particularly family and friends, was a potential factor shaping patient decisions. There is a great need for more studies to better understand the role of community-level factors in increasing demand, so that efforts can be made to change cultural norms where these are a barrier.

At the health system level
There must be a balance between the need for health facilities to generate enough income to pay personnel and buy supplies, whilst reducing financial barriers experienced by patients. Barriers include direct costs (surgical fees) and indirect costs (such as transport costs or loss of income whilst away from home). Reducing these barriers is generally shown to improve the uptake of surgery, although the influence of financial barriers will vary depending on the local context. Factors such as population density and local transport infrastructure will probably affect the relationship between the cost of surgery and people’s uptake of surgery. Therefore, individual hospitals or local health authorities will need to find out what the main barriers are in their area and how to address them in a sustainable way.

Offering outreach services at regular intervals was reported to improve the uptake of cataract surgery, perhaps due to familiarity and the gradual raising of the local population’s awareness about eye health and the benefits of eye care services. The number of studies exploring these relationships remains limited, so there is a need for more operational research in this area.

What action should result from this review of the published research?
Our review did not identify interventions that are consistently and strongly associated with improved use of cataract services. The main finding was the glaring lack of evidence on the strategies that work in low- or middle-income countries to improve cataract surgery uptake (only two studies, both from China, addressed this question).

The review points to an urgent need for studies that evaluate different approaches to improve the uptake of surgery and their effectiveness in different settings. It is critical that these studies are of sufficient size to be able to examine statistically significant associations between outcomes and patient characteristics (such as gender or age), as this will help us to understand who benefits from these approaches and who does not.

Eye care programmes and non-governmental organisations can look for opportunities to embed studies in programmes and share their findings widely. Analysis of hospital data could be useful for identifying which groups of people (e.g., women or people with disabilities) come forward, and which do not. This could be supplemented by qualitative studies of patients – e.g., interviewing patients or asking them to complete questionnaires. These could be done in partnership with other organisations with experience in qualitative research, such as local training and research institutions.

Reference
No one left behind: how Colombia is adapting its trachoma programme to reach indigenous populations

People-centred and human rights-based approaches increase access to eye care.

In Colombia, some nomadic indigenous groups, including the Jupá makú, Yujup makú, and Cacua makú, live in the Amazon basin’s ancestral territory, where they travel through the jungle in seasonal cycles. They have an increased risk of trachoma due to various geographical, socioeconomic, and cultural risk factors, including insufficient access to basic services to prevent trachoma, such as health education, safe water, and sanitation, and limited access to health care services.

Traditional beliefs and practices can also interfere with the delivery of eye care. For example, many indigenous communities believe that trachomatous trichiasis (TT), the late blinding stage of trachoma, is caused by eating mojoijoy (the larvae of palm beetles). These communities believe that the hairs of the larvae grow inside the eyelid, which then damages the cornea of the eye. In other communities, traditional healers use a resin from the caraña tree as a wax to remove eyelashes. This form of epilation offers relief from the pain of eyelashes scraping against the cornea, but can cause skin lacerations.

To address these and other challenges, Colombia’s Ministry of Health and Social Protection decided to include indigenous communities in the planning and implementation of its national trachoma programme from 2011–2018. The ministry held annual meetings, bringing together programme teams and indigenous communities to identify goals, build trust, and improve knowledge about trachoma. In the Vaupés region, for example, local authorities, with the guidance of the Ministry of Health and Social Protection, worked with leaders, traditional authorities, and communities to identify nomadic people and those living in settlements who had TT, to provide health education, and to distribute antibiotics.

People with TT were offered a transfer to Mitú, the capital of Vaupés, for assessment and corrective treatment. This was carried out by specialists using the bilamellar tarsal rotation technique. All transfers, accommodation, food, and medical treatment were provided by the health authorities with support from the Pan American Health Organization (PAHO).

Throughout the programme, efforts were made to ensure that interventions were culturally appropriate. Health workers collaborated with the traditional healers who perform rituals that are important to the indigenous communities; this helped to increase participation in the trachoma programme. To increase the efficiency of the programme, health workers also provided education and treatment for other health issues, such as soil-transmitted helminths.

Colombia’s people-centred and rights-based approach to health care has increased access and participation in health services for indigenous communities. The programme has resumed activities suspended during the COVID-19 pandemic. Research is being planned that will generate evidence about access, barriers, and the role of trainers in delivering trachoma programmes in the Amazon region.

Colombia adheres to the Regional Policy on Ethnicity and Health, adopted by PAHO Member States in September 2017, which commits it to developing inclusive and collaborative solutions, adapted to the social, cultural, and geographic context, and to address health gaps, including interventions for neglected tropical diseases and eye health, in indigenous communities. Going forward, the national trachoma programme requires increased involvement by all stakeholders, support and funding to provide health services to those communities, and improvements in the access to (and use of) water and sanitation to achieve health targets, including the elimination of trachoma as a public health problem.
Sitapur Eye Hospital was set up in 1927 in Sitapur, in the Indian state of Uttar Pradesh. The hospital began cataract services in 1935, providing much-needed community eye care for many decades. However, there followed a period of decline in eye care services, with the hospital’s cataract output reducing to just 2,000 operations per year in 2009. The hospital’s extensive buildings also degraded over time.

The prevalence of cataract in Uttar Pradesh is high because of poor access to surgery. High quality, high-volume eye care centres are therefore needed, and Sitapur Eye Hospital (SEH), with its large physical infrastructure and recognisable brand value, had the potential to increase its cataract output to better meet the eye care needs of the population.

A team was formed in 2009 to do just that. They found that the key challenges were as follows:

- a shortage of eye care personnel with the right level of skills in the right areas
- a lack of systems to monitor and improve quality
- not enough patients coming in for surgery
- a lack of proper counselling for patients needing surgery, and a lack of effective tracking of patients, e.g., by sending follow-up reminders
- a lack of outreach activities
- a shortage of funds
- staff attitudes that compromised patient care.

Over the next 13 years, these challenges were addressed through improvements in the following areas.

Systems, infrastructure, training, and quality

Improvements have included the installation of better equipment, training of ophthalmic personnel, renovation of the operation theatre, and putting in place better systems flow and processes. Information and hospital management system (IHMS) software was installed to electronically record the demographic and clinic data of patients. Outpatient processes were streamlined. All clinical and administrative protocols were also aligned to the country’s standard operating procedures; these were strictly followed and monitored to avoid any medical errors, such as cluster endophthalmitis. The visual outcomes of cataract surgery were assessed using Cataract Quality Metrics, a benchmarking software programme. Infrastructure and quality improvement is a continual process now, which is built into our organisational culture.

The academic/training programmes that we now offer includes a Bachelor of Optometry degree, a Masters in Ophthalmology degree (with an annual intake of 15 students), clinical fellowships in ophthalmology and optometry, and training courses for ophthalmologists, optometrists, and ophthalmic assistants.

Collaborations

Organisations such as Aravind Eye Care System, Sightsavers India, CBM, and Orbis, as well as the Indian government – through health schemes like the national programme for control of blindness and visual impairment, ‘Rashtriya Bal Swasthya Karyakram’ (a national programme to protect and promote the health of children) – are collaborating with us to improve service quality, offer training, and improve service delivery; they are also providing financial support.

Increasing patients’ access to surgery

Sitapur Eye Hospital conducts comprehensive eye care outreach camps where we identify cataract patients in rural and low-income communities. Everyone selected for cataract surgery at the camps is offered free eye surgery, spectacles, medicines, transport, and food. During the COVID-19 pandemic, door-to-door screening and mobile van-based services were created to reach the community. For non-surgical eye conditions, twenty well-equipped vision centres have also been established in eight districts; these enable communities to have easier access to eye care in their local neighbourhoods.
Finances
Initially, Sitapur Eye Hospital’s chief medical officer, who is responsible for teaching and administration, helped to generate income by performing phacoemulsification using premium lenses, glaucoma surgery, and paediatric surgery. This subsidised the cost of providing care to patients who would otherwise be unable to afford surgery.

Finances now come from multiple sources. Sitapur Eye Hospital has set up a three-tier paying system for patients: paid services for those who can afford to pay in full, subsidised services for those unable to pay the full fees, and free treatment for those unable to pay at all. The ratio of paying to free patients is 30:70. The hospital also receives funding from non-governmental organisations (which support their special outreach activities), via government reimbursements and medical insurance, and from the sale of spectacles and medicines. All of this has enabled us to become financially self-sustaining.

Results
As a result of these efforts, Sitapur Eye Hospital has increased its output from 2,000 cataract operations in 2009 to 31,000 operations in 2021, with no episodes of cluster endophthalmitis and 74.8% of patients achieving corrected visual acuity of 6/18 or better. We operate on 700 to 800 children for cataract annually and attend to all sub-specialty cases. According to the demographic data collected using our IHMS, the male-to-female ratio of cataract patients is 50:50. Because of our outreach services, eye care is now reaching more villages, which is improving access to services for women, children, and disabled people, on their doorstep.

Looking to the future
The Sitapur Eye Hospital model is a self-sustainable one, both financially and in terms of human resource needs. Infrastructure and quality improvement is now a continual process, built into our organisational culture. The aim is to perform 100,000 cataract operations annually by 2030, to continue to provide equitable eye care for all, to develop specialties in ophthalmology, and to upgrade training and research facilities on an ongoing basis.

References

Picture quiz
A 65-year-old man complains of gradually decreasing vision for the last two years. He has always been myopic, but recently his myopia has got worse, and he has had to change his spectacles twice in twelve months. He has been a heavy smoker for many years and has type 2 diabetes and hypertension. He is taking tablets for diabetes and raised blood pressure but is not on any other treatment. There is no other past ocular or medical history. His unaided vision is 6/60, but (in the eye in the photo) this improves to 6/18 with a pinhole.

ANSWERS
1. a. His eye is growing longer
 b. He has keratoconus
 c. He has a nuclear cataract

2. a. Diabetes
 b. Smoking
 c. Steroid treatment
 d. Uveitis
 e. Glaucoma

3. a. Encourage him to stop smoking and improve the management of his diabetes
 b. Prescribe new, stronger spectacles
 c. Refer for cataract surgery

Question 1 Why is his myopia getting worse? (Select one)
- a. His eye is growing longer
- b. He has keratoconus
- c. He has a nuclear cataract

Question 2 What do you think has caused/exacerbated this problem? (Select all that are correct)
- a. Diabetes
- b. Smoking
- c. Steroid treatment
- d. Uveitis
- e. Glaucoma

Question 3 How would you help this man improve his vision?
- a. Encourage him to stop smoking and improve the management of his diabetes
- b. Prescribe new, stronger spectacles
- c. Refer for cataract surgery