In This Issue...

Editorial: External Eye Infections
Gordon J Johnson
MD FRCS FRCOphth
Professor and Director
International Centre for Eye Health
Institute of Ophthalmology
11-43 Bath Street
London EC1V 9EL, UK

No exact figures are yet available for the number of people blind due to infections of the cornea with bacteria, fungi, viruses or Acanthamoebae. In the summary figures from the World Health Report or the Global Data Bank at the World Health Organization Programme for Prevention of Blindness, infectious keratitis is included in the 10 million or so to due to ‘other causes’. Yet if we look at the results of individual surveys of the causes in different countries, blindness due to ‘other corneal opacities’ or ‘corneal sears’ is usually greater than the proportion caused by trachoma. Some of these cases will be due to vitamin A deficiency early in life, others to trauma. But a sizeable proportion will be due to suppurative infection (i.e., ‘pus-producing’ infection) in both eyes, or in the second eye where the causes in the two are different. We need further investigation of the proportions of causes making up these ‘other corneal opacities’.

Every ophthalmologist or eye health care worker knows what a severe clinical problem infective corneal ulceration can present, especially in tropical latitudes. If the published results of the causative organisms in these ulcers are arranged according to geographical latitude, this shows that the proportion due to fungi increases the nearer the study is to the equator, reaching 56% of the total in Accra, Ghana, at a latitude of 8°N. In Hyderabad, India, in the second report in this issue, fungi accounted for 33% of corneal ulcers where an organism could be identified. This is at an intermediate latitude, 17.5°N. Until very recently, antifungal agents, and even the newer broad spectrum antibiotics, have either not been available in many developing countries or have been prohibitively expensive.

So what can be done to prevent these severe corneal infections, and to treat them before they cause irreversible corneal scarring or perforation and loss of the eye? Because of the shortage of appropriate drugs, a search has been going on for simpler and less expensive antimicrobial agents which could be widely distributed. In India, silver sulphadiazine ointment looked very hopeful for treating fungal keratitis, but has not fulfilled its early promise. Povidone iodine solution is effective as an antiseptic, is widely used pre-operatively for this purpose, and is effective in preventing ophthalmia neonatorum. But it does not appear to penetrate sufficiently deeply into the cornea to treat successfully established fungal infections. Chlorhexidine, in varying strengths, has been used for over 40 years as an antiseptic in the treatment of burns, bladder infections, vaginal infections and gingivitis, as well as a surgical scrub. It is most important that chlorhexidine, when used in the treatment of the eyes, is prepared at the appropriate strength. As a 0.02% solution in water it is an effective treatment for Acanthamoeba infection of the cornea. In two small clinical trials in India and Bangladesh, 0.2% chlorhexidine was superior to natamycin in treating a range of fungi causing keratitis. Aspergillus, however, remained very difficult to treat. Recent attempts to use chlorhexidine in two locations in Africa have not been so encouraging, although the ulcers are often so far advanced when they present that no topical treatment is going to be effective.
Very recently, a number of specific anti-fungal agents have begun to be manufactured in India, and can be bought over the counter in India for 30-50 rupees (40-75 British pence; less than one US dollar) for a 5ml bottle of drops. These include ketoconazole and fluconazole drops as well as natamycin. Clotrimazole ointment is now manufactured in Bangladesh. Ciprofloxacin drops are readily available in India for bacterial ulcers. The way forward, therefore, may be for prevention of blindness agencies, or Ministries of Health in other tropical countries, to import these preparations from India or set up a central manufacturing facility in, for example, sub-Saharan Africa.

If effective drugs are now becoming available, it therefore becomes essential that eye care workers recognise these ulcers immediately. Garg and Rao also emphasised in their article that local hospitals should put in place simple microbiology facilities to recognise whether the ulcer is bacterial or fungal. This can be done from corneal scrapes and Gram stain or a smear in potassium hydroxide (KOH) or lacto-phenol cotton blue. The most appropriate drug can then be started at the earliest opportunity.
Conjunctivitis: Diagnosis and Management

Mark Wood FRCS
PCEA Kikuyu Eye Unit
PO Box 45, Kikuyu, Kenya

Introduction
A healthy conjunctiva is necessary for the maintenance of a healthy cornea and thus the visual acuity of the eye. The conjunctiva contributes to the tear film which has three layers: (Inner) mucous – adherence to the cornea (from the conjunctiva) (Middle) aqueous – wetting agent (from the lacrimal glands) (Outer) oil – prevention of evaporation (Meibomian and Zeis glands)

Infections of the conjunctiva can spread to the cornea and can cause a perforation, e.g., gonococcal infection. Allergic conjunctivitis or limbal catarrh can spread over the cornea. ‘Cobblestones’ form under the lid on the tarsal conjunctiva, and can cause corneal ulcers. Chemical injury to the limbal area can destroy the stem cells that are responsible for the re-epithelialization of the cornea. Dryness will damage the surface of the cornea.

Diagnosis and Management
Conjunctivitis may be:
- infective: bacterial, viral or chlamydial
- allergic

Other rarer causes such as molluscum contagiosum, Parinaud’s ocular glandular conjunctivitis or phlyctenular conjunctivitis will not be discussed in this paper.

Bacterial Conjunctivitis
Symptoms and signs: red eyes, discharge of pus, pain.

It is usually bilateral. It may start in one eye and later spread to the other.

The common organisms are the Staphylococcus aureus, Staphylococcus epidermidis, Group A Streptococcus and Streptococcus pneumoniae. Other organisms are Haemophilus influenzae, Pseudomonas and Escherichia coli. Moraxella lacunata causes an angular conjunctivitis with a whitish discharge at the outer canthus. The spectrum of organisms causing conjunctivitis varies around the world.

Bacterial infection of the conjunctival sac can be secondary to discharge resulting from a foreign body, dry eye, trichiasis, or lacrimal mucocoele. It is necessary to examine the lid margins, evert the upper lid, and look for discharge from the lacrimal puncta.

To make a specific diagnosis of the organism involved, a culture should be taken. In most instances the disease will respond if the secondary causes are treated and a broad-spectrum antibiotic is used. Eye drops are more practical than ointments as vision is not blurred with drops. They can be easily and frequently applied. However, most primary clinics will have tetracycline eye ointment as their ophthalmic antibiotic, so this should be used. Chloramphenicol and gentamicin are both broad spectrum antibiotics and often available. Initially the drops should be instilled every 10 minutes until the infection is under control. The eye should not be padded. Frequent eyelid cleaning is necessary.

Viral Conjunctivitis
Symptoms and signs: watery discharge, red eye, itch.

Epidemic keratoconjunctivitis, often due to type 8 adenovirus, may have a follicular reaction of the tarsal conjunctiva. The preauricular lymph nodes may be enlarged. Epidemic (acute) haemorrhagic conjunctivitis was first reported in West Africa in the 1960s and is usually caused by enterovirus 70. Small subconjunctival haemorrhages are characteristic of this highly infective eye inflammation which often lasts for only a few days.

Viral conjunctivitis is a self-limiting disease and does not require antibiotic treatment unless a secondary bacterial infection occurs. Cold compresses will help the discomfort, but usually the patient will have to let the disease run its course. Antivirals, e.g., acyclovir, are not indicated.

Allergic (Vernal) Conjunctivitis
Symptoms and signs: red eye, excessive lacrimation, itch.

Allergic conjunctivitis is a significant and frustrating part of the work in an eye clinic. Geographical, genetic and environmental factors are influential in this disease.

There is pigmentation of the conjunctiva, cobblestones of the tarsal conjunctiva and infiltrates at the limbus (corneoscleral margin). The whole cornea can be covered with infiltrates. Mucus builds up in the tear film. The patient may have other allergies such as rhinitis. Keratoconus is another complication associated with vernal conjunctivitis.

Most cases are mild, the patient needs reassurance but no medication. A few patients will develop serious problems that will need attention, possibly for years. The clinician will have to be supportive to the patient until the disease runs its course. It can cause a child to miss long periods at school but tends to burn out in early adult life.

There is no ideal treatment and some drugs used are harmful. Cold compresses can help with mild symptoms. Astringent drops, e.g., zinc sulphate, will not cure the problem but may relieve symptoms.

Topical steroids such as prednisolone eye drops are frequently used and although complications are uncommon it is vital to be aware of them. For example, corneal ulcers can be made worse, particularly herpes simplex (dendritic ulcers). Vernal catarrh causes corneal ‘shield’ ulcers, which can become secondarily infected and made worse by steroids. Cataract and raised intraocular pressure leading to glaucoma are also complications of long term steroids. However, in severe cases of vernal conjunctivitis systemic steroids may be needed.

Other drops deal with the allergic response at different parts of the immune cascade. Antihistamines are only partially effective. Mast cell stabilizers such as cromolyn sodium 4% and more recently lodoxamide 0.1% are effective if used continuously for many months. These drugs are safe but expensive. Cromolyn powder is available for local production of eye drops. Sodium cromoglycate 2% (Opti-crom) may also be available.

Surgical intervention by cryotherapy and scraping of cobblestones is not effec-
Conjunctivitis: Bacterial, Viral and Allergic

<table>
<thead>
<tr>
<th>Type</th>
<th>Symptoms and Signs</th>
<th>Management</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial Conjunctivitis</td>
<td>Red eye, Discharge of pus, Pain/Photophobia (especially if secondary corneal involvement)</td>
<td>Chloramphenicol 0.5% eye drops, Gentamicin 0.3% eye drops, Tetracycline 1% eye ointment, Intensive instillation for first day or until symptoms and signs reduce</td>
<td>Personal hygiene: hand washing, Correct cleaning and disinfection of instruments between examinations, Contact lens hygiene</td>
</tr>
<tr>
<td>Viral Conjunctivitis</td>
<td>Red eye, Watery discharge, Itch/Irritation, Subconjunctival haemorrhages</td>
<td>Cold compresses to relieve discomfort</td>
<td>Personal hygiene: hand washing, Correct cleaning and disinfection of instruments between examinations</td>
</tr>
<tr>
<td>Allergic Conjunctivitis</td>
<td>Red eye, Lacrimation ++, Itch/Irritation, Trantas spots, Cobblestones, Mucus build up</td>
<td>Reassurance, Antihistamines (eye drops or orally), Steroid eye drops, Cromoly sodium 4% eye drops, Lodoxamide 0.1% eye drops</td>
<td>Avoid allergens</td>
</tr>
</tbody>
</table>

Viral conjunctivitis, in particular adenovirus, can sweep through a community or an institution such as a school very quickly. This is highly infectious and needs to be controlled by the enforcement of strict hygiene standards – towels, face cloths, hands and examination of instruments between examinations are some examples of how this can easily be transmitted.

Prevention of allergic conjunctivitis is not possible unless the patient is able to change his or her environment or job or identify the allergen causing the allergy and remove it, e.g., pollen, animal fur. Drugs can cause an allergy that is reversed by stopping the drug. Atropine, neomycin and eye drop preservatives are particularly common causes of such drug reactions.

Summary

Diseases of the conjunctiva are diverse and need proper diagnosis, treatment and appropriate preventive measures.

References

COMMUNITY EYE HEALTH WORKSHOPS

The International Centre for Eye Health, in collaboration with overseas partners, will be organising one week workshops in Community Eye Health at the following venues:

- India: October 1999
- Nigeria: December 1999
- South Africa: January 2000
- Colombia: April 2000
- Pakistan: April 2000

The courses are designed for eye health workers who are working or plan to work in Community Eye Health.

Letters of enquiry should be sent to:
Adrienne Papendorf, ICEH, 11 – 43 Bath Street, London, EC1V 9EL
Fax: 00 44 (0)171 608 6950 E-mail: a.papendorf@ucl.ac.uk

Gram –ve rods (Pseudomonas) and white cells

Exhibit of IRC/ICEH publications at the International Ophthalmic Nurses' Association Conference 1999

Photo: Sue Stevens
Corneal Ulcer: Diagnosis and Management

Prashant Garg MS
Gullapalli N Rao MD
Sight Savers’ Corneal Training Centre
L V Prasad Eye Institute
L V Prasad Marg
Banjara Hills
Hyderabad 500 034, India

Introduction

Corneal ulcer is a significant cause of visual impairment and blindness in the developing world. Corneal infections are responsible for a large proportion of this scarring. A review of the data on indications for corneal transplantation in the developing world revealed that corneal scar was the most common indication (28.1%), of which keratitis accounted for 50.5%. Besides this, about 12.2% of all grafts were done for active infectious keratitis. Thus supplicative keratitis and its complications constitute important causes of ocular morbidity, particularly in the developing world.

Almost any organism can invade the corneal stroma if the normal corneal defence mechanisms, i.e., lids, tear film and corneal epithelium are compromised. While viral infections are the leading cause of corneal ulcer in the developed nations (with Acanthamoeba infection in contact lens wearers), bacteria, fungi and Acanthamoebae are important aetiological agents in the developing world. The spectrum of corneal pathogens shows a wide geographical variation. At L V Prasad Eye Institute, Hyderabad, 71.9% of all cases of ulcerative keratitis were culture positive. Of the culture positive cases 63.9% were bacterial, 33% were fungal, 2.1% were parasitic, and 6.2% were due to mixed infection. Various organisms isolated from cases of infectious keratitis are shown in Table 1.

In this article we focus on the diagnosis and management of supplicative corneal ulcer.

Diagnosis

A detailed history and thorough clinical examination using the slit-lamp biomicroscope are important steps in the diagnosis of corneal ulcer. Although clinical signs may be insufficient to confirm infection, a break in the continuity of the epithelium associated with underlying stromal infiltrate should be considered infectious unless proved otherwise. Similarly, there are no distinctive or exclusive signs to identify the responsible organisms, but clinical experience and careful slit-lamp examination can point toward a probable aetiological diagnosis in some cases.

The laboratory procedures used in the diagnosis of infectious keratitis are based on:

(a) direct visualisation of organisms in the material,
(b) inoculation of material under appropriate conditions to allow multiplication of organisms.

Laboratory Investigations

Whenever a patient with infectious keratitis presents, after detailed clinical examination, corneal scrapings are taken under topical anaesthesia using a sterile No. 15 Bard Parker blade. Scrapings are taken from the edges and base of the ulcer (see Appendix). The material obtained is examined microscopically using Gram’s (see Appendix) and Giemsa staining methods and potassium hydroxide 10% or calcofluor or white preparation. Calcofluor white is a fluorescent dye and requires a fluorescent microscope. Lactophenol cotton blue stain may also be used which does not require a fluorescent microscope (see Appendix).

Since the clinical appearance of supplicative keratitis depends on many variables, it is often difficult to arrive at an aetiological diagnosis based entirely on slit-lamp examination. For example, apart from Acanthamoeba keratitis (Fig.1), the ring-shaped infiltrate can be seen in fungal keratitis (Fig.2), HSV (herpes simplex) keratitis, and even in Pseudomonas keratitis. Similarly, Nocardia keratitis presents classically with multiple small white infiltrates arranged in a wreath pattern (Fig.3), and it can have fine filaments extending into the surrounding cornea, similar to fungal keratitis. Pain out of proportion to the size of infiltrate and radial keratoneuritis, classically described for contact lens-related Acanthamoeba keratitis, is rarely experienced in non-contact lens related Acanthamoeba keratitis. The clinical picture is often confused if the lesions are peripheral, or advanced involving the entire cornea (Fig.4). Laboratory investigations are therefore required if the causative organism is to be identified.

A detailed history and thorough clinical examination using the slit-lamp biomicroscope are important steps in the diagnosis of corneal ulcer. Although clinical signs may be insufficient to confirm infection, a break in the continuity of the epithelium associated with underlying stromal infiltrate should be considered infectious unless proved otherwise. Similarly, there are no distinctive or exclusive signs to identify the responsible organisms, but clinical experience and careful slit-lamp examination can point toward a probable aetiological diagnosis in some cases. Gram-positive cocci typically cause localised round or oval ulceration with greyish white stromal infiltrates having distinct borders and minimal surrounding stromal haze. Keratitis due to gram-negative bacteria typically follows a rapid inflammatory destructive course characterised by dense stromal suppuration and hazy surrounding cornea with a ground glass appearance. Fungal keratitis is usually characterised by a dry raised slough, stromal infiltrate with feathery edges, satellite lesions, and a thick endothelial exudate. Acanthamoeba keratitis is characterised by epithelial irregularities with single or multiple stromal infiltrates in a classical ring-shaped configuration. Severe pain and radial keratoneuritis (i.e., inflammation of the corneal nerves, seen as a whitish outline of the corneal nerves) are also characteristics of Acanthamoeba infection.

Since the clinical appearance of supplicative keratitis depends on many variables, it is often difficult to arrive at an aetiological diagnosis based entirely on slit-lamp examination. For example, apart from Acanthamoeba keratitis (Fig.1), the ring-shaped infiltrate can be seen in fungal keratitis (Fig.2), HSV (herpes simplex) keratitis, and even in Pseudomonas keratitis. Similarly, Nocardia keratitis presents classically with multiple small white infiltrates arranged in a wreath pattern (Fig.3), and it can have fine filaments extending into the surrounding cornea, similar to fungal keratitis. Pain out of proportion to the size of infiltrate and radial keratoneuritis, classically described for contact lens-related Acanthamoeba keratitis, is rarely experienced in non-contact lens related Acanthamoeba keratitis. The clinical picture is often confused if the lesions are peripheral, or advanced involving the entire cornea (Fig.4). Laboratory investigations are therefore required if the causative organism is to be identified.

The laboratory procedures used in the diagnosis of infectious keratitis are based on:

(a) direct visualisation of organisms in the material,
(b) inoculation of material under appropriate conditions to allow multiplication of organisms.

Whenever a patient with infectious keratitis presents, after detailed clinical examination, corneal scrapings are taken under topical anaesthesia using a sterile No. 15 Bard Parker blade. Scrapings are taken from the edges and base of the ulcer (see Appendix). The material obtained is examined microscopically using Gram’s (see Appendix) and Giemsa staining methods and potassium hydroxide 10% or calcofluor or white preparation. Calcofluor white is a fluorescent dye and requires a fluorescent microscope. Lactophenol cotton blue stain may also be used which does not require a fluorescent microscope (see Appendix).

The material is also inoculated on various solid and liquid media that facilitate the growth of various organisms. Lactophenol cotton blue stain may also be used which does not require a fluorescent microscope (see Appendix).

The laboratory procedures used in the diagnosis of infectious keratitis are based on:

(a) direct visualisation of organisms in the material,
(b) inoculation of material under appropriate conditions to allow multiplication of organisms.

Whenever a patient with infectious keratitis presents, after detailed clinical examination, corneal scrapings are taken under topical anaesthesia using a sterile No. 15 Bard Parker blade. Scrapings are taken from the edges and base of the ulcer (see Appendix). The material obtained is examined microscopically using Gram’s (see Appendix) and Giemsa staining methods and potassium hydroxide 10% or calcofluor or white preparation. Calcofluor white is a fluorescent dye and requires a fluorescent microscope. Lactophenol cotton blue stain may also be used which does not require a fluorescent microscope (see Appendix).

The material is also inoculated on various solid and liquid media that facilitate the growth of various organisms. Lactophenol cotton blue stain may also be used which does not require a fluorescent microscope (see Appendix).
growth of bacteria, fungi, and Acanthamoeba. These include fresh blood agar, chocolate agar, Sabouraud’s dextrose agar (SDA), non-nutrient agar with an overlay of Escherichia coli, thioglycolate broth and brain heart infusion broth (Fig. 5). These media are incubated under appropriate atmospheric conditions and are examined daily for growth for at least seven days before a negative report is given. The growth on media is then identified and where appropriate is subjected to an antimicrobial susceptibility test. Microbiological investigations should always be done for the following cases.

- Severe ulcers (a rapidly progressing infiltrate which is more than 6mm in diameter or involves deeper stroma or associated with imminent or actual perforation).
- Cases where history and clinical examination suggest unusual non-bacterial pathogens.
- Treatment

When treating a patient with suppurative keratitis the clinician has 3 management options:

1. Complete microbiological work-up of all ulcers, followed by initial therapy based on the smear results;
2. Empirical therapy (based on previous clinical experience) with one or more commercially available broad spectrum antimicrobial agents; or
3. Microbiology work-up of severe ulcers where the history or clinical findings suggest an atypical non-bacterial pathogen.

It is clear that option 1 is the best approach for the tertiary referral practice, because most of the ulcers are severe or caused by unusual or resistant organisms that have failed to respond to initial therapy. However, there is a lot of confusion regarding the best option for community ophthalmologists. A large proportion of suppurative keratitis is caused by bacteria (64%), most of which are sensitive to broad spectrum antibiotics. It is reasonable, therefore, to assume that in small lesions that are away from the visual axis and not associated with risk factors for unusual organisms, initial treatment may be started with a broad spectrum antibiotic at frequent intervals. These patients, however, need close daily follow up to make sure the lesion is improving. At the earliest evidence of deterioration the ulcer should be subjected to a detailed microbiology work-up or referred to a centre where such facilities exist.

Microbiological investigations should always be done for the following cases.

- Severe ulcers (a rapidly progressing infiltrate which is more than 6mm in diameter or involves deeper stroma or associated with imminent or actual perforation).
- Cases where history and clinical examination suggest unusual non-bacterial pathogens.

Initial treatment in these cases should be based on the microscopic examination. Initial treatment in fungal keratitis is usually started with natamycin (5%) suspension administered half hourly. Various antifungal agents used in the treatment of keratitis are shown in Table 2.

For Acanthamoeba keratitis, treatment is usually started with polyhexamethylene biguanide (PHMB) 0.02% or chlorhexidine 0.02% (Table 3). Antifungal and anti-Acanthamoeba therapy is started only when microbiological evidences exists.
Modification of therapy is primarily based on clinical response to initial therapy and is guided by the results of culture and sensitivity tests.

Supplementary Treatment
Cycloplegic agents such as atropine sulphate 1%, homatropine 1% or cyclopentolate 1% instilled three times a day reduce ciliary spasm and produce mydriasis, thereby relieving pain and preventing synechiae formation. Anti-glaucoma agents are used when intraocular pressure is high. If required, oral analgesics for pain may be used.

The role of topical corticosteroids in the management of suppurative keratitis is controversial and hence they are best avoided.

Simple debridement of necrotic debris in conjunction with intensive topical therapy may help facilitate drug penetration especially of anti-fungal agents. Tissue adhesive using N-butyryl cyanoacrylate with a bandage contact lens is useful in cases with marked thinning or perforation less than 2mm.

Penetrating keratoplasty is performed in cases with advanced disease at presentation where there is no response to medical therapy or when a large perforation is present.

Prevention
Although not always a preventable disease, certain steps may help reduce the potentially severe consequences of suppurative keratitis.
- Community awareness of risk factors for suppurative keratitis such as minor trauma and the use of contaminated traditional eye solutions
- Early recognition and institution of appropriate therapy by community health workers or ophthalmologists
- Prompt referral of advanced cases to tertiary eye care centres

Suppurative keratitis is a sight-threatening disorder. Early clinical suspicion, rational use of laboratory diagnostic procedures and appropriate therapy can go a long way towards reducing ocular damage from this disorder.

References

Table 2: Antifungal Agents used in Keratitis

Polyenes	Nystatin	Amphotericin B	Natamycin		
Pyrimidines	Fluconazole				
Imidazoles	Clotrimazole	Miconazole	Ketoconazole	Fluconazole	Itraconazole

Table 3: Anti-Acanthamoeba Agents used in Keratitis

Antiseptic biocides	Chlorhexidine	PHMB
Aminoglycosides	Neomycin	Paromomycin
Diamidines	Dibromopropamidine	Hexamidine

Herpes Simplex Virus Keratitis
Herpes simplex virus infection is an important cause of corneal scarring and visual impairment. The clinical features and treatment of herpetic corneal ulceration were the subject of an early edition of the Journal (J Comm Eye Health 1990; 3: 1-4).

Herpes simplex virus is found worldwide, sometimes with devastating effects (see photos), although Drs Garg and Rao rightly indicate that in developing countries other causes of corneal ulceration are relatively more common.

The subject of herpes simplex virus keratitis is not addressed in this particular issue of the Journal.

Editor.
This is by far the most important staining method in bacteriology. It is a staining technique which is employed for the diagnostic identification of a wide variety of organisms. The mechanism of the Gram stain is not fully understood beyond the identifiable differences in cell wall characteristics between those organisms classified as 'Gram +ve' and those classified as 'Gram -ve'. The Gram +ve organisms are able to retain basic dyes at a higher concentration than the Gram -ve species. Probably, the most important difference is in the permeability of the cell wall during the staining process. Following staining with crystal violet and treatment with iodine, a dye-iodine complex is formed within the cell. This is insoluble in water but moderately soluble in acetone (or alcohol) which is used as a decolouriser. Under the influence of the decolouriser the dye-iodine complex (blue/black in colour) is retained by the Gram +ve group of organisms but flows freely from the Gram -ve group. Presumably, this is due to the former having a less permeable cell wall. The Gram -ve group can now assume the colour of the chosen counter-stain to distinguish between the two groups.

Preparation of Lactophenol Cotton Blue Slide Mounts

The lactophenol cotton blue (LPCB) wet mount preparation is the most widely used method of staining and observing fungi and is simple to prepare. The preparation has three components: phenol, which will kill any live organisms; lactic acid which preserves fungal structures, and cotton blue which stains the chitin in the fungal cell walls.

Procedure for corneal scrape material:

1. Place a drop of 70% alcohol on a microscope slide.
2. Immerse the specimen/material in the drop of alcohol.
3. Add one, or at most two drops of the lactophenol/cotton blue mountant/stain before the alcohol dries out.
4. Holding the coverslip between forefinger and thumb, touch one edge of the drop of mountant with the coverslip edge, and lower gently, avoiding air bubbles. The preparation is now ready for examination.

Corneal Ulcer: Appendix
Transmission and Control of Infection in Ophthalmic Practice

Ramesh Seewoodhary
BSc(Hons) RGN
OND(Hons) CERTEd
Senior Lecturer (Ophthalmic Biomedical Sciences)
Wye Institute of Health Sciences
Thames Valley University
Ealing, London W5 2BS

Sue Stevens
RGN RM OND FETC
Nurse Consultant
Journal of Community Eye Health
Ophthalmic Resource Co-ordinator
International Centre for Eye Health
11–43 Bath Street, London EC1V 9EL

Introduction

Eye infection may be bacterial, viral, chlamydial, fungal or acanthamoebic, and these infections account for a large proportion of the workload in ophthalmic centres. Cross-infection may occur through contaminated instruments, hands, communal towels and droplets. Patients with dry eye or inadequate lid closure are more susceptible. Other risk factors are low immunity, malnutrition, general disease and extremes of age. An overview of some common eye infections, causative pathogens and spread mode is given. This is followed by an outline of general infection control principles with additional specific considerations for ophthalmic practice.

Common Eye Infections and Spread Mode

Conjunctivitis may be bacterial, viral or chlamydial and is a common cause of unilateral or bilateral infected red eyes.

- Bacterial conjunctivitis, usually caused by Staphylococcus aureus, is more common in children. The signs and symptoms are sticky, purulent discharge, foreign body sensation, with peripheral conjunctival redness. The pupils are normal and the cornea is clear. The visual acuity is usually unaffected unless there is corneal complication. Bilateral purulent discharge in the newborn requires urgent referral as this may indicate infection with Neisseria gonorrhoeae or possibly Chlamydia. The patient and parental sexual partners must be examined and treated by a specialist healthcare worker as soon as possible. Neisseria gonorrhoeae infection may result in loss of sight if treatment is delayed.
- Viral conjunctivitis is bilateral and more contagious with redness developing acutely in one eye first, followed some days later in the second eye. Adenovirus types 8 and 19 can cause kerato-conjunctivitis and subsequent blurring of vision. Other strains may be associated with upper respiratory tract infection. Signs include serous discharge, tarsal follicles, swollen lids and tender pre-auricular nodes. Patients should not attend work or school until infection has cleared, over 1–3 weeks. Other viral infections include herpes simplex, varicella zoster and molluscum contagiosum. Herpes simplex conjunctivitis may be present together with a dendritic corneal ulcer. Varicella zoster conjunctivitis occurs secondarily to ophthalmic shingles. Molluscum contagiosum is commonly associated with a mild, but chronic, follicular conjunctivitis and superficial keratitis, which does not respond to antibiotics. Measles and mumps are also causes of conjunctivitis.

Blepharitis (inflammation of the eyelids) tends to run a chronic course and may occur together with conjunctivitis because the structures involved are anatomically joined.

Transmission may have a profound effect on the patient’s general health as well as damaging sight. The healthcare worker must be aware of the sequence of events in the transmission of infection. Figure 1 shows a possible chain of infection leading to acute conjunctivitis.

Table 1 shows how some viruses can be transmitted in a healthcare environment (see also reference below to adenoviral infection in ophthalmic practice).

In addition, patients with an eye infection need to be given clear instructions as well as appropriate medication to encourage recovery. This may be supported with a written advice sheet. Box 1 gives the necessary information. This could be reproduced as an individual handout or for notice board display in the clinic.

Box 1: Instructions for Patients with Eye Infection

<table>
<thead>
<tr>
<th>Eye infection is easily passed to others</th>
<th>Flies will be attracted to sticky eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO! wash hands before and after instilling eye medication</td>
<td>DO NOT! do not touch or rub the eyes</td>
</tr>
<tr>
<td>use only the drops or ointment prescribed</td>
<td>do not touch the lids or lashes with the dropper or applicator</td>
</tr>
<tr>
<td>wash the face frequently, especially before instilling medication</td>
<td>do not share face clothes or towels</td>
</tr>
<tr>
<td>wear sunglasses, if available, to provide comfort</td>
<td>do not cover the eye with a dressing</td>
</tr>
<tr>
<td>return to the health centre if the eye does not improve</td>
<td>do not go to work or school until the infection clears</td>
</tr>
<tr>
<td>destroy medication when the infection clears</td>
<td>do not store medication in direct sunlight or within reach of children</td>
</tr>
<tr>
<td></td>
<td>do not share medication with others</td>
</tr>
</tbody>
</table>

Staphylococci and propionibacteria are common pathogens. In the USA Staphylococcus epidermidis is more commonly isolated in patients with blepharitis (95.8%) than Staphylococcus aureus (10.5%). Signs and symptoms are red, crusty lid margins, mild lid swelling, itchiness, dry sensation and occasional lacrimation. Vision is normal unless the cornea becomes involved. The condition commonly occurs in unhealthy environments or in those with skin problems. Daily lid ‘scrubs’ and a healthy diet are essential in managing this chronic disorder. A course of antibiotic eye ointment may be prescribed.
Control of Infection

General Principles of Infection Control

In many western hospitals, in recent years, the appointment of an Infection Control Officer (usually a nurse) has become commonplace. This highlights the significance and challenge of infection control within clinical areas. Indeed a considerable number of infections are actually acquired within a hospital setting.

- Personal hygiene and clothing

All healthcare workers of all disciplines have responsibility for infection control and this begins with their own personal hygiene. Individuals with any infection should not have direct patient contact. Any infected or potentially infected lesion must be covered with an occlusive dressing and reported to the person-in-charge who will decide if the staff member should take sickness leave until the infection has cleared.

Clothing should be changed daily. Studies have shown that hospital uniforms, over the course of a day, become a source of bacterial infection. Jewellery, including wristwatches, should not be worn and fingernails should be kept clean and cut short. Clothing worn in the operating theatre must not be worn in other areas. Hair must be kept clean and covered. Beards are a source of infection. Face masks must be worn properly to cover the nose, mouth and chin completely, changed for each operation and disposed of carefully. Cotton masks must be washed before re-using.

- Handwashing

Hands are the most important "instruments" of healthcare workers and also the principal source of cross-infection in a healthcare setting. Handwashing is the most important of all infection control measures, yet it is usually performed inadequately. Both technique and frequency are important – see Boxes 1, 2 and 3.

- Gloves

The proper use of gloves prevents cross-infection between patient and healthcare worker and vice versa. Despite the risk to self, a study in Nigeria showed that the main reason for non-compliance in wearing of gloves by healthcare workers with direct patient contact was because the practice was considered unnecessary.

Gloves should be worn on both hands whenever there is potential contact with blood and other body fluids. The wearing of gloves is recommended for all eye surgery. For many years it was accepted that some ophthalmic surgeons chose not to wear gloves because of reduction in touch sensitivity but this practice is no longer an option because of the risk of HIV and hepatitis B infection. A new, sterile pair of gloves should be worn for each patient contact.

Good quality gloves may be re-sterilized but should be checked for damage – e.g.,

<table>
<thead>
<tr>
<th>Table 1: Viruses that can be Transmitted in a Healthcare Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
</tr>
<tr>
<td>Varicella zoster</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Herpes simplex type 1</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HIV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rubella</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Adapted from: Daly J. Biological Hazards. Nursing Standard 1998; 13 (3):43–46

Figure 1: Possible Chain of Eye Infection

Handwashing is the most important of all infection control measures, yet it is usually performed inadequately. Both technique and frequency are important – see Boxes 1, 2 and 3.
Control of Infection

Hand hygiene/disinfection, using the same technique, is achieved by using an antiseptic for 35-30 seconds and is necessary in the event of known infection, before aseptic procedures, and following contact with blood and body fluids.

Surgical hand-scrubbing includes washing the hands and forearms and nail brushing, requiring a minimum of 5 minutes scrubbing and a defined technique to remove micro-organisms before participating in invasive surgical procedures. It is an acquired skill needing supervised practice.

Box 3: Handwashing is Required in the Following Situations:
- Before any aseptic procedure
- Before and after handling any patient
- After hollowing any soiled item
- Before and after handling food
- Whenever hands are, or even feel, soiled
- When entering or leaving a clinical area
- After using the toilet

If an accident occurs, i.e., a prick with a used needle or sharp instrument, the wound should be allowed to bleed freely for a few minutes, then washed with soap under running water and covered with a sterile dressing. The HIV and hepatitis status of the patient, on whom the needle was used, should be noted. The incident must be reported to the person-in-charge and the injured worker examined by a medical practitioner.

Needles should not be used more than once but if this is not possible it is essential that proper sterilization procedures are followed. Needles, used for the removal of corneal foreign bodies, etc., must not be left on the slit-lamp table top!

Spillages of body fluids must be wiped immediately after use, and separately in a disposable means not be burned immediately. Soiled linen must be removed immediately and allowed to dry before re-sterilizing.

Allergy and sensitivity to the latex material is currently being widely discussed.

- Waste, spillages, linen and sharps disposal
 - All clinical waste must be disposed of carefully. Soiled dressings and surgical remnants must be burned immediately. Soiled linen must be removed immediately and washed separately from routine changes of bedding, etc.
 - Disposable needles must be disposed of immediately after use, and separately in a closed impenetrable container, appropriately labelled. This may be burned or buried, preferably daily. Therefore, a small container is better than a large one.

Box 2: Handwashing Technique
- Wet hands with clean, preferably running water
- Apply soap or cleanser
- Rub palm to palm
- Rub right palm over back of left hand
- Rub left palm over back of right hand
- Rub palm to palm with fingers interlaced
- Rub backs of fingers against palms with fingers interlocked
- Rub around thumb against palm
- Rub around thumb against palm
- Rub around fingers of right hand with palm of left hand
- Rub around fingers of left hand with palm of right hand
- Rinse off soap thoroughly with clean, preferably running water, before drying well

N.B. Disposable paper towels are ideal but if a communal towel only is available for drying hands a clean one must be provided daily. Jet air dryers are not recommended!

This is known as **social handwashing** and will take no longer than 30 seconds and is required before and after routine procedures in clinical areas.

The correct wearing of caps, masks and gloves is important for control of infection. A ready supply of gloves should always be available. Allergy and sensitivity to the latex material is currently being widely discussed.

- **Waste, spillages, linen and sharps disposal**
 - All clinical waste must be disposed of carefully. Soiled dressings and surgical remnants must be burned immediately. Soiled linen must be removed immediately and washed separately from routine changes of bedding, etc.
 - Disposable needles must be disposed of immediately after use, and separately in a closed impenetrable container, appropriately labelled. This may be burned or buried, preferably daily. Therefore, a small container is better than a large one.

Community Eye Health Vol 12 No. 30 1999

by filling with water, turning inside out and allowing to dry before re-sterilizing.

An adequate supply of gloves should always be available.

Allergy and sensitivity to the latex material is currently being widely discussed.

- **Waste, spillages, linen and sharps disposal**
 - All clinical waste must be disposed of carefully. Soiled dressings and surgical remnants must be burned immediately. Soiled linen must be removed immediately and washed separately from routine changes of bedding, etc.
 - Disposable needles must be disposed of immediately after use, and separately in a closed impenetrable container, appropriately labelled. This may be burned or buried, preferably daily. Therefore, a small container is better than a large one.

Box 2: Handwashing Technique
- Wet hands with clean, preferably running water
- Apply soap or cleanser
- Rub palm to palm
- Rub right palm over back of left hand
- Rub left palm over back of right hand
- Rub palm to palm with fingers interlaced
- Rub backs of fingers against palms with fingers interlocked
- Rub around thumb against palm
- Rub around thumb against palm
- Rub around fingers of right hand with palm of left hand
- Rub around fingers of left hand with palm of right hand
- Rinse off soap thoroughly with clean, preferably running water, before drying well

N.B. Disposable paper towels are ideal but if a communal towel only is available for drying hands a clean one must be provided daily. Jet air dryers are not recommended!

This is known as **social handwashing** and will take no longer than 30 seconds and is required before and after routine procedures in clinical areas.

Hand hygiene/disinfection, using the same technique, is achieved by using an antiseptic for 35-30 seconds and is necessary in the event of known infection, before aseptic procedures, and following contact with blood and body fluids.

Surgical hand-scrubbing includes washing the hands and forearms and nail brushing, requiring a minimum of 5 minutes scrubbing and a defined technique to remove micro-organisms before participating in invasive surgical procedures. It is an acquired skill needing supervised practice.

Box 3: Handwashing is Required in the Following Situations:
- Before any aseptic procedure
- Before and after handling any patient
- After handing any soiled item
- Before and after handling food
- Whenever hands are, or even feel, soiled
- When entering or leaving a clinical area
- After using the toilet

If an accident occurs, i.e., a prick with a used needle or sharp instrument, the wound should be allowed to bleed freely for a few minutes, then washed with soap under running water and covered with a sterile dressing. The HIV and hepatitis status of the patient, on whom the needle was used, should be noted. The incident must be reported to the person-in-charge and the injured worker examined by a medical practitioner.

Needles should not be used more than once but if this is not possible it is essential that proper sterilization procedures are followed. Needles, used for the removal of corneal foreign bodies, etc., must not be left on the slit-lamp table top!

Spillages of body fluids must be wiped immediately after use, and separately in a disposable means not be burned immediately. Soiled linen must be removed immediately and allowed to dry before re-sterilizing.

Allergy and sensitivity to the latex material is currently being widely discussed.

- **Waste, spillages, linen and sharps disposal**
 - All clinical waste must be disposed of carefully. Soiled dressings and surgical remnants must be burned immediately. Soiled linen must be removed immediately and washed separately from routine changes of bedding, etc.
 - Disposable needles must be disposed of immediately after use, and separately in a closed impenetrable container, appropriately labelled. This may be burned or buried, preferably daily. Therefore, a small container is better than a large one.

Box 2: Handwashing Technique
- Wet hands with clean, preferably running water
- Apply soap or cleanser
- Rub palm to palm
- Rub right palm over back of left hand
- Rub left palm over back of right hand
- Rub palm to palm with fingers interlaced
- Rub backs of fingers against palms with fingers interlocked
- Rub around thumb against palm
- Rub around thumb against palm
- Rub around fingers of right hand with palm of left hand
- Rub around fingers of left hand with palm of right hand
- Rinse off soap thoroughly with clean, preferably running water, before drying well

N.B. Disposable paper towels are ideal but if a communal towel only is available for drying hands a clean one must be provided daily. Jet air dryers are not recommended!

This is known as **social handwashing** and will take no longer than 30 seconds and is required before and after routine procedures in clinical areas.

Control of Infection

The correct wearing of caps, masks and gloves is important for control of infection

Photo: Murray McGinn

Eye infection can be spread by healthcare workers through simple social greeting of patients, i.e., shaking of hands. Patients often rub their eyes and contaminated hands will transfer the organism to the healthcare worker. It is important that hands are washed immediately before performing an eye examination and after the patient has left before greeting another patient.

Slit-lamp biomicroscope

The areas which come into contact with the patient must be washed with soap solution between patient examinations – chin rest, head rim, not forgetting the hand grips!

Tonometer prisms

These should be wiped after use on disposable paper tissue and then placed (tip only) in a small pot of sodium hypochlorite 1% for at least 10 minutes before use. (NOTE: The prism must be rinsed in sterile water and dried before use!!) If there is suspected adenoviral infection the soaking must be extended to 30 minutes before re-using the same tonometer prism. A fresh sterile pot and new solution of sodium hypochlorite must be provided for every clinic session.
Control of Infection

- Occluder/pinhole
 This should be stored in a container of sodium hypochlorite 1% for at least 10 minutes between patients, rinsed in sterile water or saline and wiped dry before use. A fresh solution must be provided before each clinic session.

 NB. Sodium hypochlorite causes corrosion — do not use stainless steel containers for the above.

- Eye drops
 Ideally, each patient should have his or her own bottle of drops and, where there is known infection, separate bottles for each eye! However, in many situations this may be economically impossible. Care should therefore be taken to avoid eyedropper contact with eyelids, lashes, eyebrows and facial skin. Where possible a single-use dispenser should be used in out-patient examinations. Expiry dates must be checked, as out-of-date drops can be a source of infection.

- Pathological specimens
 Scrapings of the cornea and conjunctiva may be taken using a disposable sterile surgical needle or blade. If a spatula or loop is used it must be sterilized before and after each procedure by flaming, and allowed to cool. Alternatively, it may be sterilized by chemical soaking.

- Eye dressings
 An infected eye must never be covered with a pad and/or bandage. Used eye dressings must be disposed of immediately and burned. Eye shields must be washed before being re-applied and, in known infected cases, must not be used on other patients. Cotton wool, gauze swabs or tissues, used when instilling drops or ointment, must be disposed of immediately.

- Spectacles
 Wears should be encouraged to wash their spectacles daily.

Policy

Eye infection can happen anywhere. Eyes are particularly susceptible to many organisms including Gram –ve bacilli, adenoviruses, herpes simplex virus and fungi.

Cross-infection is a costly and continuing concern. Multi-resistant Staphylococcus aureus (MRSA) has made alarming news worldwide as treatment is very difficult. Lives, as well as sight, have tragically been lost.

Health workers must aim to limit hospital-acquired infection. Lack of motivation and poor microbiological knowledge will result in non-compliance. Eye staff are advised to develop and teach an appropriate infection control policy with regular reinforcement and review.

References

1. Seewoodhary M. Effectiveness of Sodium Hypochlorite Solution as a Disinfectant in Ophthalmic Practice. Ophthalmic Nursing 1998; 2 (3): 4–12

Community Eye Health Courses 1999/2000

- MSc in Community Eye Health – 1 year (Sept. 99 – Sept. 2000)
- Diploma in Community Eye Health – 6 months (Sept. 99 – Mar. 2000)
- Certificate in Community Eye Health – 3 months (Sept. – Dec. 99)
- Short courses – 1–3 weeks (on-going)

Enquiries: Courses Promotions Officer, International Centre for Eye Health, 11–43 Bath Street, LONDON, EC1V 9EL, United Kingdom.
Fax: +44 171 608 6950; E-mail:clare.scott@ucl.ac.uk

OPHTHALMOLOGIST REQUIRED IN CAMEROON, AFRICA

For clinical, surgical and developmental responsibilities from August 1999.

Accommodation and Pay provided

Please fax The Matron, Sr. Eileen Javnyuy, on (237) 48 17 97 or write to her at:
St. Elizabeth General Hospital Shisong
PO Box 8, Kumbo
Bui Division, Cameroon.
Introduction

In the belief that 'prevention is better than cure' there has been widespread enthusiasm for screening populations for illness in its early stage, so that a better outcome can be achieved by more effective intervention. This concept has grown in strength in western populations because of the increasing importance of cancer as a major cause of death. Cancer with its insidious course and natural history which moves from a localised and treatable phase to a widespread and untreatable one is an example of a group of conditions for which screening has been believed to be appropriate. But, even in cancer, important lessons have been learnt about the limitations of screening. The only cancer for which screening is widespread in western nations is that of the cervix. There is still controversy as to its effectiveness and meanwhile, breast cancer screening has only been established in a few countries despite evidence that mammography may reduce mortality in certain sections of the population. There are no widespread or national strategies for screening eye conditions in western populations except for the testing of children's vision. This is usually to detect amblyopia at a stage when treatment is thought still to be effective and, thereafter, at school to identify refractive errors. There is a also a general view that it is justified to screen known diabetics for retinopathy, but so far there is no consensus on how it should be done and indeed whether it will be effective in preventing blindness. Studies on both these issues are underway.

Definitions of Screening

There is much confusion over the use of the term 'screening'. Mass screening, opportunistic screening, case finding, screening camps and screening tests are all examples of the growing uncertainty. It is useful to apply strict definitions to the term in order to avoid confusion. Screening is a public health intervention intended to improve the health of a precisely defined target population. Within this population are individuals considered at risk of the effects of a condition, and screening is justified by the awareness of that condition as an important public health problem. It is the anticipated identification of those who may have a problem and who might benefit from further investigation and treatment. It therefore involves the application of a quick and simple test, usually by paramedics, to large numbers of normal persons, so that those with a possible problem can be identified. It does not make the final diagnosis.

The importance of this concept is that screening is never something that should be undertaken casually and it should always be carefully monitored and evaluated. Without strict criteria, monitoring is impossible. 'Opportunistic screening' is a concept and a term which should be avoided. In a few circumstances it might be appropriate to test casually for a condition in a patient who has presented with another unrelated condition, but this should rather be called 'opportunistic surveillance'. Similarly, 'screening camps' are misnamed. The term 'screening' here implies an element of uncertainty which should not be acceptable when patients are being identified as possible candidates for surgery, either at the base hospital – or worse, at the camp itself. The tests at such camps have to be diagnostic and precise. If they are not, the outcome of cataract surgery may be poor due to poor case selection. Finally, the use of the term 'screening test' should only be used when the test is being used to separate one group of patients from another, where the individuals who test positive go on to more precise diagnostic investigations.

Problems with Screening: Coverage

Screening is potentially expensive and it is an intervention which is thrust upon the public rather than a response to an individual seeking help. It must, therefore, be constantly and carefully monitored both for its processes and its effectiveness. False negative tests are a constant source of concern and there is often public outrage after such occurrences. False positive tests cause undue anxiety and wasted resources. But for the screening programme to be effective, it must reach a high proportion of the population. Failure to achieve this leads to the failure of the programme to meet its targets. This is measured by coverage – the proportion of the target population successfully tested in each screening activity. Keep in mind that it is those hardest to reach in screening programmes who suffer from the worst disease. In diabetes, for example, it is the bilateral amputee or the resentful/indifferent young diabetic who are the least likely to comply with an invitation for an eye examination – and yet they are the most likely to be in need of treatment.

The Screening Test: Validity

The ability of the screening test to differentiate between those who are disease free from those who are affected is called the test validity. Here the terms sensitivity and specificity are used and these are easily confused.

- Sensitivity is the proportion of disease positive individuals who are detected by the test and hence reflects the important group who are disease positive but not detected by the test – the 'false negatives'. A useful way to remember this is that the 'N' of false Negatives is in the 'N' of 'sensitivity'.

- Specificity on the other hand is the ability of the test to correctly identify those who do not have the disease, the proportion of disease free people correctly labelled as disease free. Thus, this reflects the important proportion of people said to have the disease when they have no – the false Positives; and again, remember the 'P' in 'specificity'. Further reading in public health texts will deal with these for those interested.

Effectiveness of Screening Programmes: Costs

These are all measures of the process of screening. More important ultimately is evidence of the effectiveness of screening, showing that the screening programme succeeds in reducing morbidity, disability or mortality from the target condition. Thus, for cancer screening, it must be shown that the screening intervention reduces death rates from the particular cancer. Screening for lung cancer with mobile chest X-ray units was discontinued because it failed to show any effect on death rates. In modern cost conscious health economies, it is now necessary that the cost
of screening can be justified by the health gain achieved. In the case of eyes, this means the number of sight years saved and cutting the social costs of failing to prevent loss of sight. To do this it is necessary to draw up a complex model which shows how the benefits compare with the costs. Such models have been successfully constructed for screening diabetics for retinopathy in fully industrialised economies, and it is on the basis of these models that action is now being taken in the UK to develop national strategies for diabetic screening.

In order to construct such models we need detailed epidemiological information on the prevalence and incidence of the condition, the natural history of the disease (including any differential mortality of those affected), and the effectiveness of treatment. To decide whether the screening will be economically beneficial, it is necessary then to add information on costs of screening, of treatment (including dealing with false positives) and costs of failure to detect and treat. Unfortunately, diabetic eye disease is probably the only ophthalmic condition for which these requirements can be met. Certainly, this is not yet the case for either glaucoma or amblyopia, though much work is ongoing to rectify the situation.

The Future: Screening for Genetic Disease

With the huge growth of the Human Genome Project, a global endeavour to sequence the entire human genetic code, screening is about to enter a new era. The potential to identify carriers of genes which may increase susceptibility to a disease (glaucoma for instance) will attract increasing attention and concern of the public. The need to consider ethical, economic and humanitarian factors will greatly increase, in order to prevent wastage of scarce resources, undue anxiety and the potential stigma associated with identified carriers. Unless there is clear evidence that resources for effective intervention are available for all affected individuals, gene testing should remain in the area of research alone.

Abstract

Age over 46 years does not affect the pressure lowering effect of trabeculectomy in primary open angle glaucoma

M C Briggs
J L Jay

Background/aims

Previous reports have suggested that the success rate for trabeculectomy is poorer in younger age groups but these studies often have heterogeneous groups representing different types of glaucoma with variable surgical prognosis. Therefore, the relation between age and the success of trabeculectomy in the single diagnostic category of primary open angle glaucoma (POAG) without identifiable risk factors was examined for failure in the age range 46-85 years.

Methods

The records of 208 patients who had undergone a first trabeculectomy for POAG were examined retrospectively. Age ranged from 46 to 85 (mean 66.7 years). The outcome of surgery was examined at final available follow up and at 1 and 2 years after surgery. Trabeculectomy was considered a success if intraocular pressure was ≤21 mm Hg with or without additional medical treatment (cumulative success) and an ‘absolute’ success if intraocular pressure was ≤21 mm Hg without additional medical treatment.

Results

Cumulative success for trabeculectomy was 92.3% at final follow up and 96.6% at 2 year follow up; absolute success rate was 66.3% at final follow up and 71.0% at 2 years. There was no significant trend for greater success of trabeculectomy in the older age groups (cumulative success at 2 year follow up, χ² for linear trend 1.07 (p=0.3) nor was the drop in intraocular pressure significantly greater with increasing age (analysis of variance for intraocular pressure lowering from presentation to 2 years’ follow up (Kruskal-Wallis t=5.9, p=0.55). Patients with pseudoexfoliation were excluded from the main analysis as these patients have been shown to have a lower final intraocular pressure following trabeculectomy, a finding which was confirmed in this study.

Conclusion

This study demonstrates that in the age range 46-85 years there is no demonstrable relation between age at the time of surgery and success of trabeculectomy in POAG.

Published courtesy of: *Br J Ophthalmol* 1999; 83:280-4
Dear Sir

Since 1966, the NOOR Eye Institute (NEI), as part of the International Assistance Mission (IAM), has been serving the people of Afghanistan by providing ophthalmic training and eye care. NEI is running 3 eye care programmes based in different parts of Afghanistan: Kabul, Herat and Mazar-i-Sharif and has known for many years that there is a large problem of vitamin A malnutrition. Preliminary survey work has been carried out to examine the extent of the problem. The results, although carried out on a small scale and, therefore, statistically unreliable, are shocking. The problem appears to be far worse than NEI had previously estimated, although the findings are consistent with anecdotal reports from doctors at our hospitals. Other findings from surveys done by international NGOs confirm that the general malnutrition situation in Afghanistan is extremely poor. This survey does not examine the most potentially at risk group, pre-school children.

School Screening Survey Results

(See Table)

Two primary schools were visited from September to November 1997, and the survey was carried out by ophthalmic technician students accompanied by one expatriate ophthalmic nurse.

School children found showing signs of xerophthalmia were treated immediately with 200,000 I.U. of vitamin A.

NEI has formed a Vitamin A Committee, an action plan for vitamin A intervention and has begun distribution of vitamin A, while actively encouraging other NGOs in Afghanistan to do the same.

NEI seeks to work with concerned organizations to address the serious vitamin A problem in Afghanistan. We invite your comments and input. Please direct your correspondence to the mailing address given below.

Robert Antonucci
NEI Vitamin A Committee
NOOR Eye Institute
IAM
PO Box 1167
Peshawar, Pakistan

Vitamin A Programme in Afghanistan

<table>
<thead>
<tr>
<th>Screened: Two Primary Schools, Afghanistan</th>
<th>Classification of Xerophthalmia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age: No of Children</td>
<td>X1A</td>
</tr>
<tr>
<td>7-10 years: 794</td>
<td>0.6%</td>
</tr>
<tr>
<td>Over 10 years: 149</td>
<td>0%</td>
</tr>
<tr>
<td>Overall Total All Ages Indicators for Xerophthalmia 10.6%</td>
<td></td>
</tr>
</tbody>
</table>

Corneal scarring after vitamin A deficiency affecting an Afghan boy

Photo: Murray McGavin
The Global Initiative for the Elimination of Avoidable Blindness – Vision 2020: The Right to Sight

The Global Initiative – Vision 2020: The Right to Sight was officially launched on 18 February 1999 with the endorsement of Dr Gro Harlem Brundtland, Director-General, World Health Organization.

The mission of Vision 2020 is to eliminate the main causes of blindness in order to give all people of the world, particularly the millions of needlessly blind, the right to sight by the year 2020.

In the Journal of Community Eye Health, Volume 11, 1998, Dr Bjorn Thylefors, Director, Disability/Injury Prevention and Rehabilitation, World Health Organization, described the main emphases of the Global Initiative and the significant cooperation with the Task Force of the Partnership Committee of Collaborating Non-Governmental Organizations. Other authors who have written for us on the Global Initiative are Dr R Pararajasegaram, President, IAPB; Mr Richard B Porter, Executive Director, Sight Savers International and Rev Christian Garms, Executive Director, Christian Blind Mission International.

Priority needs focus on three broad categories:

1. Disease Control: with emphasis on Cataract, Trachoma and the ‘SAFE’ strategy, Onchocerciasis, Childhood Blindness and Refractive Errors and Low Vision.

2. Human Resource Development: stressing the primary health care approach and also the training of ophthalmologists, ophthalmic medical assistants, ophthalmic nurses and medical students.

3. Infrastructure and Appropriate Technology Development: developing sustainability in the use of modern technology, provision of eye beds, local production of eye medicines, refraction capability with spectacles and low vision devices and required surgical instrumentation.

The Journal of Community Eye Health will continue to invite expert authors in these fields to write in future issues of the Journal.

The Sixth General Assembly of the International Agency for the Prevention of Blindness (IAPB), in Beijing, China, 5–10 September 1999, will support and seek to develop further the programme of Vision 2020: the Right to Sight. For information on the IAPB Sixth General Assembly contact: Dr Gullapalli N Rao, L V Prasad Eye Institute, Hyderabad 500 034, India. Tel: 0091 40 215389/248267. Fax: 0091 40 248271. E-mail: IAPB@lvpeye.stph.net

D D Murray McGavin
MD FRCS(Ed) FRCOphth

Epidemiology Research Awards Scheme
The International Society of Geographical & Epidemiological Ophthalmology (ISGEO) has been pleased to announce that, in 1997, Dr George Jacob (Papua New Guinea) and, in 1998, Dr Okello Quinto (Uganda) received the ISGEO Start-up Research Grants. These grants (up to US$1,000) are to help people living and working in developing countries initiate small/pilot ophthalmology research projects. Applications are being accepted for 1999 and a copy of the research application form can be obtained from:
Dr Paul Courtright, ISGEO Secretary
BC Centre for Epidemiologic & International Ophthalmology
St. Paul’s Hospital
1081 Burrard Street, Vancouver, BC, V6Z 1Y6, CANADA
Tel: 001-604-806 - 8169
Fax: 001-604-806 - 8058
E-mail: pcourtright@stpaulshosp.bc.ca

The Royal College of Ophthalmologists
Diploma in Ophthalmology Examination
The Royal College of Ophthalmologists has introduced an examination leading to the award of the Diploma in Ophthalmology (DRCOphth). The examination will be held twice a year, in June and November.

This Diploma is aimed at those not wishing to pursue a career as a consultant ophthalmologist in the United Kingdom. It should, therefore, be of interest to all doctors with an interest in ophthalmology working outside the European Union.

Details are available from:
Examinations Office, The Royal College of Ophthalmologists,
17 Cornwall Terrace, London NW1 4OW, UK.
Telephone: 00 44 (0) 171 935 0782 (extensions 24, 25, 26)
E-mail: rco.exams@btinternet.com

Photo: Murray McGavin

Spectacles were of real benefit to this young student in Uganda

The Sixth General Assembly of the International Agency for the Prevention of Blindness (IAPB), in Beijing, China. 5–10 September 1999, will support and seek to develop further the programme of Vision 2020: the Right to Sight. For information on the IAPB Sixth General Assembly contact: Dr Gullapalli N Rao, L V Prasad Eye Institute, Hyderabad 500 034, India. Tel: 0091 40 215389/248267. Fax: 0091 40 248271. E-mail: IAPB@lvpeye.stph.net

D D Murray McGavin
MD FRCS(Ed) FRCOphth