School eye health – going beyond refractive errors

Health, including visual health, is inextricably linked to school achievement, quality of life, and economic productivity. Introducing health education in schools is essential as knowledge and good habits acquired at an early age are likely to persist.

Globally, 19 million children are living with vision impairment and approximately 12 million children have a significant, uncorrected refractive error. Of particular concern is the rapid increase in myopia, particularly in East Asia, where 78% of children in China are affected.

School eye health programmes, when integrated into broader school health education and backed up by eye and child health services, can reach a large number of children and their families.

School eye health can encompass the following:

- **Health promotion and prevention** to increase awareness among children and teachers and to promote a healthy school environment. This can reduce the impact of local endemic eye diseases such as trachoma.

- **Primary eye care** to detect and treat common eye conditions (e.g. infections), refer people with conditions such as cataract, and to manage refractive errors with high quality, appealing and affordable spectacles.

Activities may include:

- Training children to spread eye health messages and conduct simple vision screening among peers and family members (the child-to-child approach).

- Showing children and adults how to help and interact with those who are blind or have irreversible low vision.

Children should be offered general vision screening when they enter and leave primary school, and when they leave secondary school/high school. Any child with visible eye conditions (squint, white pupil, red eyes) and associated symptoms (abnormal head/face turn, inability to copy from the blackboard, complaints of chronic headaches), should also be screened and provided with, or referred to, the appropriate services.

Spectacles should not be prescribed to children with minimal refractive error. Children will not notice a significant improvement in their vision and will therefore simply not wear them! This is a waste of resources.

The guidelines for correction are:

- **myopia** ≥ 0.50D
- **hypermetropia** ≥ +2.00D
- **astigmatism** ≥ 0.75D

To increase follow-up and referral, the following must be systematically recorded.

- Uptake of referrals (to ensure services are accessed, including low vision care).
- Spectacle wearing after 3–4 months and any reasons for non-wear.
- Any educational adjustments made for children identified with irreversible vision impairment (by consulting with teachers).
- New and/or progressed myopia cases and replacement of broken/missing spectacles (by repeating screening of 11–15 year-old children).

In order to increase coverage, members of school health programmes can work with school nurses and teachers after consultation with educational authorities.

In order to make informed decisions, research (which can be multi-disciplinary) plays a pivotal role in providing evidence, which might be needed for:

- Planning – needs assessment based on prevalence data, reviews of existing resources and analysis of policy.
- Improving implementation – operational research to identify gaps and challenges which might be needed for:

- Financial support for optical correction from the government (child health services/insurance schemes).
- Qualified personnel to fit affordable and good quality spectacles.

Eye health is an essential part of a school health programme and should be comprehensive and respond to the locally relevant eye conditions and diseases. Correction of refractive errors is critical but should not be the only focus of a school eye health programme.

Figure 1 describes a systematic approach to school eye health.
Electrosurgical units – how they work and how to use them safely

Ismael Cordero
Biomedical Service Manager: Gradian Health Systems, New York, USA.
ismaelcordero@me.com

Electrosurgery is used routinely in eye surgery to cut, coagulate, dissect, fulgurate, ablate and shrink tissue. High frequency (100 kilohertz to 5 megahertz), alternating electric current at various voltages (200–10,000 Volts) is passed through tissue to generate heat. An electrosurgical unit (ESU) consists of a generator and a handpiece with one or more electrodes. The device is controlled using a switch on the handpiece or a foot switch.

Electrosurgical generators can produce a variety of electrical waveforms. As these waveforms change, so do the corresponding tissue effects.

In bipolar electrosurgery (Figure 1), both the active electrode and return electrode functions are performed at the site of surgery. The two tips of the forceps perform the active and return electrode functions. Only the tissue grasped in the forceps is included in the electrical circuit. Because the return function is performed by one tip of the forceps, no patient return electrode is needed. Bipolar electrosurgery operates regardless of the medium in which it is used, permitting coagulation in a fluid environment – a great advantage when attempting to coagulate in a wet field. As a result, bipolar electrosurgery is often referred to as ‘wet field’ cautery.

In monopolar electrosurgery (Figure 2), the active electrode is placed at the surgical site. The patient return electrode (also known as a ‘dispersive electrode’) is placed elsewhere on the patient. The active electrode is connected to the generator and the return electrode is connected to the patient. The return function is performed by the patient’s body, which is therefore included in the electrical circuit.

References